MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  partfun Structured version   Visualization version   GIF version

Theorem partfun 6564
Description: Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. (Contributed by Thierry Arnoux, 30-Mar-2017.)
Assertion
Ref Expression
partfun (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝐷))

Proof of Theorem partfun
StepHypRef Expression
1 mptun 6563 . 2 (𝑥 ∈ ((𝐴𝐵) ∪ (𝐴𝐵)) ↦ if(𝑥𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴𝐵) ↦ if(𝑥𝐵, 𝐶, 𝐷)) ∪ (𝑥 ∈ (𝐴𝐵) ↦ if(𝑥𝐵, 𝐶, 𝐷)))
2 inundif 4409 . . 3 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
3 eqid 2738 . . 3 if(𝑥𝐵, 𝐶, 𝐷) = if(𝑥𝐵, 𝐶, 𝐷)
42, 3mpteq12i 5176 . 2 (𝑥 ∈ ((𝐴𝐵) ∪ (𝐴𝐵)) ↦ if(𝑥𝐵, 𝐶, 𝐷)) = (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝐷))
5 elinel2 4126 . . . . 5 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐵)
65iftrued 4464 . . . 4 (𝑥 ∈ (𝐴𝐵) → if(𝑥𝐵, 𝐶, 𝐷) = 𝐶)
76mpteq2ia 5173 . . 3 (𝑥 ∈ (𝐴𝐵) ↦ if(𝑥𝐵, 𝐶, 𝐷)) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
8 eldifn 4058 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝐵)
98iffalsed 4467 . . . 4 (𝑥 ∈ (𝐴𝐵) → if(𝑥𝐵, 𝐶, 𝐷) = 𝐷)
109mpteq2ia 5173 . . 3 (𝑥 ∈ (𝐴𝐵) ↦ if(𝑥𝐵, 𝐶, 𝐷)) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐷)
117, 10uneq12i 4091 . 2 ((𝑥 ∈ (𝐴𝐵) ↦ if(𝑥𝐵, 𝐶, 𝐷)) ∪ (𝑥 ∈ (𝐴𝐵) ↦ if(𝑥𝐵, 𝐶, 𝐷))) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝐷))
121, 4, 113eqtr3i 2774 1 (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝐷))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  cdif 3880  cun 3881  cin 3882  ifcif 4456  cmpt 5153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-if 4457  df-opab 5133  df-mpt 5154
This theorem is referenced by:  mptprop  30933  cycpm2tr  31288  fsuppssindlem2  40204
  Copyright terms: Public domain W3C validator