MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  partfun Structured version   Visualization version   GIF version

Theorem partfun 6665
Description: Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. (Contributed by Thierry Arnoux, 30-Mar-2017.)
Assertion
Ref Expression
partfun (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝐷))

Proof of Theorem partfun
StepHypRef Expression
1 mptun 6664 . 2 (𝑥 ∈ ((𝐴𝐵) ∪ (𝐴𝐵)) ↦ if(𝑥𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴𝐵) ↦ if(𝑥𝐵, 𝐶, 𝐷)) ∪ (𝑥 ∈ (𝐴𝐵) ↦ if(𝑥𝐵, 𝐶, 𝐷)))
2 inundif 4442 . . 3 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
3 eqid 2729 . . 3 if(𝑥𝐵, 𝐶, 𝐷) = if(𝑥𝐵, 𝐶, 𝐷)
42, 3mpteq12i 5204 . 2 (𝑥 ∈ ((𝐴𝐵) ∪ (𝐴𝐵)) ↦ if(𝑥𝐵, 𝐶, 𝐷)) = (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝐷))
5 elinel2 4165 . . . . 5 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐵)
65iftrued 4496 . . . 4 (𝑥 ∈ (𝐴𝐵) → if(𝑥𝐵, 𝐶, 𝐷) = 𝐶)
76mpteq2ia 5202 . . 3 (𝑥 ∈ (𝐴𝐵) ↦ if(𝑥𝐵, 𝐶, 𝐷)) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
8 eldifn 4095 . . . . 5 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝐵)
98iffalsed 4499 . . . 4 (𝑥 ∈ (𝐴𝐵) → if(𝑥𝐵, 𝐶, 𝐷) = 𝐷)
109mpteq2ia 5202 . . 3 (𝑥 ∈ (𝐴𝐵) ↦ if(𝑥𝐵, 𝐶, 𝐷)) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐷)
117, 10uneq12i 4129 . 2 ((𝑥 ∈ (𝐴𝐵) ↦ if(𝑥𝐵, 𝐶, 𝐷)) ∪ (𝑥 ∈ (𝐴𝐵) ↦ if(𝑥𝐵, 𝐶, 𝐷))) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝐷))
121, 4, 113eqtr3i 2760 1 (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝐷))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cdif 3911  cun 3912  cin 3913  ifcif 4488  cmpt 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-if 4489  df-opab 5170  df-mpt 5189
This theorem is referenced by:  mptiffisupp  32616  mptprop  32621  cycpm2tr  33076  redvmptabs  42348  fsuppssindlem2  42580
  Copyright terms: Public domain W3C validator