| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > partfun | Structured version Visualization version GIF version | ||
| Description: Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. (Contributed by Thierry Arnoux, 30-Mar-2017.) |
| Ref | Expression |
|---|---|
| partfun | ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptun 6714 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷))) | |
| 2 | inundif 4479 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | |
| 3 | eqid 2737 | . . 3 ⊢ if(𝑥 ∈ 𝐵, 𝐶, 𝐷) = if(𝑥 ∈ 𝐵, 𝐶, 𝐷) | |
| 4 | 2, 3 | mpteq12i 5248 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) |
| 5 | elinel2 4202 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐵) | |
| 6 | 5 | iftrued 4533 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → if(𝑥 ∈ 𝐵, 𝐶, 𝐷) = 𝐶) |
| 7 | 6 | mpteq2ia 5245 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
| 8 | eldifn 4132 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → ¬ 𝑥 ∈ 𝐵) | |
| 9 | 8 | iffalsed 4536 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → if(𝑥 ∈ 𝐵, 𝐶, 𝐷) = 𝐷) |
| 10 | 9 | mpteq2ia 5245 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷) |
| 11 | 7, 10 | uneq12i 4166 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷))) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) |
| 12 | 1, 4, 11 | 3eqtr3i 2773 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∖ cdif 3948 ∪ cun 3949 ∩ cin 3950 ifcif 4525 ↦ cmpt 5225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-if 4526 df-opab 5206 df-mpt 5226 |
| This theorem is referenced by: mptiffisupp 32702 mptprop 32707 cycpm2tr 33139 redvmptabs 42390 fsuppssindlem2 42602 |
| Copyright terms: Public domain | W3C validator |