![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > partfun | Structured version Visualization version GIF version |
Description: Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. (Contributed by Thierry Arnoux, 30-Mar-2017.) |
Ref | Expression |
---|---|
partfun | ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptun 6689 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷))) | |
2 | inundif 4473 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | |
3 | eqid 2726 | . . 3 ⊢ if(𝑥 ∈ 𝐵, 𝐶, 𝐷) = if(𝑥 ∈ 𝐵, 𝐶, 𝐷) | |
4 | 2, 3 | mpteq12i 5247 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) |
5 | elinel2 4191 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐵) | |
6 | 5 | iftrued 4531 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → if(𝑥 ∈ 𝐵, 𝐶, 𝐷) = 𝐶) |
7 | 6 | mpteq2ia 5244 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
8 | eldifn 4122 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → ¬ 𝑥 ∈ 𝐵) | |
9 | 8 | iffalsed 4534 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → if(𝑥 ∈ 𝐵, 𝐶, 𝐷) = 𝐷) |
10 | 9 | mpteq2ia 5244 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷) |
11 | 7, 10 | uneq12i 4156 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷))) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) |
12 | 1, 4, 11 | 3eqtr3i 2762 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∖ cdif 3940 ∪ cun 3941 ∩ cin 3942 ifcif 4523 ↦ cmpt 5224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-if 4524 df-opab 5204 df-mpt 5225 |
This theorem is referenced by: mptiffisupp 32419 mptprop 32424 cycpm2tr 32781 fsuppssindlem2 41703 |
Copyright terms: Public domain | W3C validator |