![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > partfun | Structured version Visualization version GIF version |
Description: Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. (Contributed by Thierry Arnoux, 30-Mar-2017.) |
Ref | Expression |
---|---|
partfun | ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptun 6726 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷))) | |
2 | inundif 4502 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | |
3 | eqid 2740 | . . 3 ⊢ if(𝑥 ∈ 𝐵, 𝐶, 𝐷) = if(𝑥 ∈ 𝐵, 𝐶, 𝐷) | |
4 | 2, 3 | mpteq12i 5272 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) |
5 | elinel2 4225 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐵) | |
6 | 5 | iftrued 4556 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → if(𝑥 ∈ 𝐵, 𝐶, 𝐷) = 𝐶) |
7 | 6 | mpteq2ia 5269 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
8 | eldifn 4155 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → ¬ 𝑥 ∈ 𝐵) | |
9 | 8 | iffalsed 4559 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → if(𝑥 ∈ 𝐵, 𝐶, 𝐷) = 𝐷) |
10 | 9 | mpteq2ia 5269 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷) |
11 | 7, 10 | uneq12i 4189 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷))) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) |
12 | 1, 4, 11 | 3eqtr3i 2776 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ifcif 4548 ↦ cmpt 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-if 4549 df-opab 5229 df-mpt 5250 |
This theorem is referenced by: mptiffisupp 32705 mptprop 32710 cycpm2tr 33112 fsuppssindlem2 42547 |
Copyright terms: Public domain | W3C validator |