Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > partfun | Structured version Visualization version GIF version |
Description: Rewrite a function defined by parts, using a mapping and an if construct, into a union of functions on disjoint domains. (Contributed by Thierry Arnoux, 30-Mar-2017.) |
Ref | Expression |
---|---|
partfun | ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptun 6579 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷))) | |
2 | inundif 4412 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | |
3 | eqid 2738 | . . 3 ⊢ if(𝑥 ∈ 𝐵, 𝐶, 𝐷) = if(𝑥 ∈ 𝐵, 𝐶, 𝐷) | |
4 | 2, 3 | mpteq12i 5180 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) |
5 | elinel2 4130 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ 𝐵) | |
6 | 5 | iftrued 4467 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → if(𝑥 ∈ 𝐵, 𝐶, 𝐷) = 𝐶) |
7 | 6 | mpteq2ia 5177 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
8 | eldifn 4062 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → ¬ 𝑥 ∈ 𝐵) | |
9 | 8 | iffalsed 4470 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) → if(𝑥 ∈ 𝐵, 𝐶, 𝐷) = 𝐷) |
10 | 9 | mpteq2ia 5177 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷) |
11 | 7, 10 | uneq12i 4095 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷))) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) |
12 | 1, 4, 11 | 3eqtr3i 2774 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝐷)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ifcif 4459 ↦ cmpt 5157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-if 4460 df-opab 5137 df-mpt 5158 |
This theorem is referenced by: mptprop 31031 cycpm2tr 31386 fsuppssindlem2 40281 |
Copyright terms: Public domain | W3C validator |