MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptapd Structured version   Visualization version   GIF version

Theorem fmptapd 6964
Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.) (Revised by AV, 10-Aug-2024.)
Hypotheses
Ref Expression
fmptapd.a (𝜑𝐴𝑉)
fmptapd.b (𝜑𝐵𝑊)
fmptapd.s (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆)
fmptapd.c ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐵)
Assertion
Ref Expression
fmptapd (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem fmptapd
StepHypRef Expression
1 fmptapd.c . . . 4 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐵)
2 fmptapd.a . . . 4 (𝜑𝐴𝑉)
3 fmptapd.b . . . 4 (𝜑𝐵𝑊)
41, 2, 3fmptsnd 6962 . . 3 (𝜑 → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐶))
54uneq2d 4063 . 2 (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)))
6 mptun 6502 . . 3 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
76a1i 11 . 2 (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)))
8 fmptapd.s . . 3 (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆)
98mpteq1d 5129 . 2 (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥𝑆𝐶))
105, 7, 93eqtr2d 2777 1 (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cun 3851  {csn 4527  cop 4533  cmpt 5120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-opab 5102  df-mpt 5121
This theorem is referenced by:  fmptpr  6965  poimirlem3  35466  poimirlem4  35467  poimirlem16  35479  poimirlem17  35480  poimirlem19  35482  poimirlem20  35483
  Copyright terms: Public domain W3C validator