MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptapd Structured version   Visualization version   GIF version

Theorem fmptapd 7107
Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.) (Revised by AV, 10-Aug-2024.)
Hypotheses
Ref Expression
fmptapd.a (𝜑𝐴𝑉)
fmptapd.b (𝜑𝐵𝑊)
fmptapd.s (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆)
fmptapd.c ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐵)
Assertion
Ref Expression
fmptapd (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem fmptapd
StepHypRef Expression
1 fmptapd.c . . . 4 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐵)
2 fmptapd.a . . . 4 (𝜑𝐴𝑉)
3 fmptapd.b . . . 4 (𝜑𝐵𝑊)
41, 2, 3fmptsnd 7105 . . 3 (𝜑 → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐶))
54uneq2d 4119 . 2 (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)))
6 mptun 6628 . . 3 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
76a1i 11 . 2 (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)))
8 fmptapd.s . . 3 (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆)
98mpteq1d 5182 . 2 (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥𝑆𝐶))
105, 7, 93eqtr2d 2770 1 (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3901  {csn 4577  cop 4583  cmpt 5173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-opab 5155  df-mpt 5174
This theorem is referenced by:  fmptpr  7108  poimirlem3  37603  poimirlem4  37604  poimirlem16  37616  poimirlem17  37617  poimirlem19  37619  poimirlem20  37620
  Copyright terms: Public domain W3C validator