MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptapd Structured version   Visualization version   GIF version

Theorem fmptapd 6914
Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.)
Hypotheses
Ref Expression
fmptapd.0a (𝜑𝐴 ∈ V)
fmptapd.0b (𝜑𝐵 ∈ V)
fmptapd.1 (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆)
fmptapd.2 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐵)
Assertion
Ref Expression
fmptapd (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem fmptapd
StepHypRef Expression
1 fmptapd.2 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐵)
2 fmptapd.0a . . . 4 (𝜑𝐴 ∈ V)
3 fmptapd.0b . . . 4 (𝜑𝐵 ∈ V)
41, 2, 3fmptsnd 6912 . . 3 (𝜑 → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐶))
54uneq2d 4093 . 2 (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)))
6 mptun 6470 . . 3 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
76a1i 11 . 2 (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)))
8 fmptapd.1 . . 3 (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆)
98mpteq1d 5122 . 2 (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥𝑆𝐶))
105, 7, 93eqtr2d 2842 1 (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  Vcvv 3444  cun 3882  {csn 4528  cop 4534  cmpt 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-opab 5096  df-mpt 5114
This theorem is referenced by:  fmptpr  6915  poimirlem3  35059  poimirlem4  35060  poimirlem16  35072  poimirlem17  35073  poimirlem19  35075  poimirlem20  35076
  Copyright terms: Public domain W3C validator