Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmptd | Structured version Visualization version GIF version |
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dmmptd.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
dmmptd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
dmmptd | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptd.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | dmmpt 6143 | . 2 ⊢ dom 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} |
3 | dmmptd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
4 | 3 | elexd 3452 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ V) |
5 | 4 | ralrimiva 3103 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ V) |
6 | rabid2 3314 | . . 3 ⊢ (𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} ↔ ∀𝑥 ∈ 𝐵 𝐶 ∈ V) | |
7 | 5, 6 | sylibr 233 | . 2 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
8 | 2, 7 | eqtr4id 2797 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 ↦ cmpt 5157 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: lo1eq 15277 rlimeq 15278 rlimcld2 15287 rlimcn3 15299 rlimmptrcl 15317 rlimsqzlem 15360 dprdz 19633 alexsublem 23195 cmetcaulem 24452 minveclem3b 24592 mbfneg 24814 mbfsup 24828 mbfinf 24829 mbflimsup 24830 itg2monolem1 24915 itg2mono 24918 itg2i1fseq2 24921 itg2cnlem1 24926 isibl2 24931 iblcnlem 24953 limccnp2 25056 limcco 25057 dvmptres3 25120 itgsubstlem 25212 iblulm 25566 rlimcnp2 26116 dchrisumlema 26636 htthlem 29279 expgrowth 41953 mptelpm 42712 choicefi 42740 mullimc 43157 limcmptdm 43176 dvsinax 43454 dirkercncflem2 43645 fourierdlem62 43709 psmeasure 44009 ovnovollem2 44195 smfmbfcex 44295 smflimsuplem2 44354 |
Copyright terms: Public domain | W3C validator |