| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptd | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dmmptd.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| dmmptd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dmmptd | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmptd.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | dmmpt 6216 | . 2 ⊢ dom 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} |
| 3 | dmmptd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
| 4 | 3 | elexd 3474 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ V) |
| 5 | 4 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ V) |
| 6 | rabid2 3442 | . . 3 ⊢ (𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} ↔ ∀𝑥 ∈ 𝐵 𝐶 ∈ V) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
| 8 | 2, 7 | eqtr4id 2784 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 Vcvv 3450 ↦ cmpt 5191 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: lo1eq 15541 rlimeq 15542 rlimcld2 15551 rlimcn3 15563 rlimmptrcl 15581 rlimsqzlem 15622 dprdz 19969 alexsublem 23938 cmetcaulem 25195 minveclem3b 25335 mbfneg 25558 mbfsup 25572 mbfinf 25573 mbflimsup 25574 itg2monolem1 25658 itg2mono 25661 itg2i1fseq2 25664 itg2cnlem1 25669 isibl2 25674 iblcnlem 25697 limccnp2 25800 limcco 25801 dvmptres3 25867 itgsubstlem 25962 iblulm 26323 rlimcnp2 26883 dchrisumlema 27406 htthlem 30853 qusrn 33387 algextdeglem4 33717 expgrowth 44331 mptelpm 45177 choicefi 45201 mullimc 45621 limcmptdm 45640 dvsinax 45918 dirkercncflem2 46109 fourierdlem62 46173 psmeasure 46476 ovnovollem2 46662 smfmbfcex 46765 smflimsuplem2 46826 |
| Copyright terms: Public domain | W3C validator |