![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmptd | Structured version Visualization version GIF version |
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dmmptd.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
dmmptd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
dmmptd | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptd.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | dmmpt 6193 | . 2 ⊢ dom 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} |
3 | dmmptd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
4 | 3 | elexd 3464 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ V) |
5 | 4 | ralrimiva 3140 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ V) |
6 | rabid2 3435 | . . 3 ⊢ (𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} ↔ ∀𝑥 ∈ 𝐵 𝐶 ∈ V) | |
7 | 5, 6 | sylibr 233 | . 2 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
8 | 2, 7 | eqtr4id 2792 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 {crab 3406 Vcvv 3444 ↦ cmpt 5189 dom cdm 5634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-mpt 5190 df-xp 5640 df-rel 5641 df-cnv 5642 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 |
This theorem is referenced by: lo1eq 15456 rlimeq 15457 rlimcld2 15466 rlimcn3 15478 rlimmptrcl 15496 rlimsqzlem 15539 dprdz 19814 alexsublem 23411 cmetcaulem 24668 minveclem3b 24808 mbfneg 25030 mbfsup 25044 mbfinf 25045 mbflimsup 25046 itg2monolem1 25131 itg2mono 25134 itg2i1fseq2 25137 itg2cnlem1 25142 isibl2 25147 iblcnlem 25169 limccnp2 25272 limcco 25273 dvmptres3 25336 itgsubstlem 25428 iblulm 25782 rlimcnp2 26332 dchrisumlema 26852 htthlem 29901 expgrowth 42703 mptelpm 43481 choicefi 43508 mullimc 43943 limcmptdm 43962 dvsinax 44240 dirkercncflem2 44431 fourierdlem62 44495 psmeasure 44798 ovnovollem2 44984 smfmbfcex 45087 smflimsuplem2 45148 |
Copyright terms: Public domain | W3C validator |