| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptd | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dmmptd.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| dmmptd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dmmptd | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmptd.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | dmmpt 6201 | . 2 ⊢ dom 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} |
| 3 | dmmptd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
| 4 | 3 | elexd 3468 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ V) |
| 5 | 4 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ V) |
| 6 | rabid2 3436 | . . 3 ⊢ (𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} ↔ ∀𝑥 ∈ 𝐵 𝐶 ∈ V) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
| 8 | 2, 7 | eqtr4id 2783 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 Vcvv 3444 ↦ cmpt 5183 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: lo1eq 15510 rlimeq 15511 rlimcld2 15520 rlimcn3 15532 rlimmptrcl 15550 rlimsqzlem 15591 dprdz 19938 alexsublem 23907 cmetcaulem 25164 minveclem3b 25304 mbfneg 25527 mbfsup 25541 mbfinf 25542 mbflimsup 25543 itg2monolem1 25627 itg2mono 25630 itg2i1fseq2 25633 itg2cnlem1 25638 isibl2 25643 iblcnlem 25666 limccnp2 25769 limcco 25770 dvmptres3 25836 itgsubstlem 25931 iblulm 26292 rlimcnp2 26852 dchrisumlema 27375 htthlem 30819 qusrn 33353 algextdeglem4 33683 expgrowth 44297 mptelpm 45143 choicefi 45167 mullimc 45587 limcmptdm 45606 dvsinax 45884 dirkercncflem2 46075 fourierdlem62 46139 psmeasure 46442 ovnovollem2 46628 smfmbfcex 46731 smflimsuplem2 46792 |
| Copyright terms: Public domain | W3C validator |