| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptd | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| dmmptd.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| dmmptd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dmmptd | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmptd.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | dmmpt 6187 | . 2 ⊢ dom 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} |
| 3 | dmmptd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
| 4 | 3 | elexd 3460 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ V) |
| 5 | 4 | ralrimiva 3124 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ V) |
| 6 | rabid2 3428 | . . 3 ⊢ (𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} ↔ ∀𝑥 ∈ 𝐵 𝐶 ∈ V) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
| 8 | 2, 7 | eqtr4id 2785 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ↦ cmpt 5170 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: lo1eq 15475 rlimeq 15476 rlimcld2 15485 rlimcn3 15497 rlimmptrcl 15515 rlimsqzlem 15556 dprdz 19944 alexsublem 23959 cmetcaulem 25215 minveclem3b 25355 mbfneg 25578 mbfsup 25592 mbfinf 25593 mbflimsup 25594 itg2monolem1 25678 itg2mono 25681 itg2i1fseq2 25684 itg2cnlem1 25689 isibl2 25694 iblcnlem 25717 limccnp2 25820 limcco 25821 dvmptres3 25887 itgsubstlem 25982 iblulm 26343 rlimcnp2 26903 dchrisumlema 27426 htthlem 30897 qusrn 33374 extdgfialglem1 33705 algextdeglem4 33733 expgrowth 44438 mptelpm 45283 choicefi 45307 mullimc 45726 limcmptdm 45743 dvsinax 46021 dirkercncflem2 46212 fourierdlem62 46276 psmeasure 46579 ovnovollem2 46765 smfmbfcex 46868 smflimsuplem2 46929 |
| Copyright terms: Public domain | W3C validator |