![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmptd | Structured version Visualization version GIF version |
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dmmptd.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
dmmptd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
dmmptd | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
2 | elex 3400 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ V) |
4 | 3 | ralrimiva 3147 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ V) |
5 | rabid2 3300 | . . 3 ⊢ (𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} ↔ ∀𝑥 ∈ 𝐵 𝐶 ∈ V) | |
6 | 4, 5 | sylibr 226 | . 2 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
7 | dmmptd.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
8 | 7 | dmmpt 5849 | . 2 ⊢ dom 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} |
9 | 6, 8 | syl6reqr 2852 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 {crab 3093 Vcvv 3385 ↦ cmpt 4922 dom cdm 5312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-mpt 4923 df-xp 5318 df-rel 5319 df-cnv 5320 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 |
This theorem is referenced by: cantnfp1lem2 8826 lo1eq 14640 rlimeq 14641 rlimcld2 14650 rlimcn2 14662 rlimmptrcl 14679 rlimsqzlem 14720 dprdz 18745 alexsublem 22176 cmetcaulem 23414 minveclem3b 23538 mbfneg 23758 mbfsup 23772 mbfinf 23773 mbflimsup 23774 itg2monolem1 23858 itg2mono 23861 itg2i1fseq2 23864 itg2cnlem1 23869 isibl2 23874 iblcnlem 23896 limccnp2 23997 limcco 23998 dvmptres3 24060 itgsubstlem 24152 iblulm 24502 rlimcnp2 25045 dchrisumlema 25529 htthlem 28299 expgrowth 39316 mptelpm 40112 choicefi 40144 mullimc 40592 limcmptdm 40611 dvsinax 40871 dirkercncflem2 41064 fourierdlem62 41128 psmeasure 41431 ovnovollem2 41617 smflimsuplem2 41773 |
Copyright terms: Public domain | W3C validator |