![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmptd | Structured version Visualization version GIF version |
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dmmptd.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
dmmptd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
dmmptd | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptd.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | dmmpt 6271 | . 2 ⊢ dom 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} |
3 | dmmptd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
4 | 3 | elexd 3512 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ V) |
5 | 4 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ V) |
6 | rabid2 3478 | . . 3 ⊢ (𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} ↔ ∀𝑥 ∈ 𝐵 𝐶 ∈ V) | |
7 | 5, 6 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
8 | 2, 7 | eqtr4id 2799 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 ↦ cmpt 5249 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: lo1eq 15614 rlimeq 15615 rlimcld2 15624 rlimcn3 15636 rlimmptrcl 15654 rlimsqzlem 15697 dprdz 20074 alexsublem 24073 cmetcaulem 25341 minveclem3b 25481 mbfneg 25704 mbfsup 25718 mbfinf 25719 mbflimsup 25720 itg2monolem1 25805 itg2mono 25808 itg2i1fseq2 25811 itg2cnlem1 25816 isibl2 25821 iblcnlem 25844 limccnp2 25947 limcco 25948 dvmptres3 26014 itgsubstlem 26109 iblulm 26468 rlimcnp2 27027 dchrisumlema 27550 htthlem 30949 qusrn 33402 algextdeglem4 33711 expgrowth 44304 mptelpm 45083 choicefi 45107 mullimc 45537 limcmptdm 45556 dvsinax 45834 dirkercncflem2 46025 fourierdlem62 46089 psmeasure 46392 ovnovollem2 46578 smfmbfcex 46681 smflimsuplem2 46742 |
Copyright terms: Public domain | W3C validator |