Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmptd | Structured version Visualization version GIF version |
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
dmmptd.a | ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) |
dmmptd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
dmmptd | ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptd.a | . . 3 ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | dmmpt 6132 | . 2 ⊢ dom 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} |
3 | dmmptd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
4 | 3 | elexd 3442 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ V) |
5 | 4 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ V) |
6 | rabid2 3307 | . . 3 ⊢ (𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V} ↔ ∀𝑥 ∈ 𝐵 𝐶 ∈ V) | |
7 | 5, 6 | sylibr 233 | . 2 ⊢ (𝜑 → 𝐵 = {𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V}) |
8 | 2, 7 | eqtr4id 2798 | 1 ⊢ (𝜑 → dom 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 ↦ cmpt 5153 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: lo1eq 15205 rlimeq 15206 rlimcld2 15215 rlimcn3 15227 rlimmptrcl 15245 rlimsqzlem 15288 dprdz 19548 alexsublem 23103 cmetcaulem 24357 minveclem3b 24497 mbfneg 24719 mbfsup 24733 mbfinf 24734 mbflimsup 24735 itg2monolem1 24820 itg2mono 24823 itg2i1fseq2 24826 itg2cnlem1 24831 isibl2 24836 iblcnlem 24858 limccnp2 24961 limcco 24962 dvmptres3 25025 itgsubstlem 25117 iblulm 25471 rlimcnp2 26021 dchrisumlema 26541 htthlem 29180 expgrowth 41842 mptelpm 42601 choicefi 42629 mullimc 43047 limcmptdm 43066 dvsinax 43344 dirkercncflem2 43535 fourierdlem62 43599 psmeasure 43899 ovnovollem2 44085 smfmbfcex 44182 smflimsuplem2 44241 |
Copyright terms: Public domain | W3C validator |