Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptrest Structured version   Visualization version   GIF version

Theorem ptrest 37732
Description: Expressing a restriction of a product topology as a product topology. (Contributed by Brendan Leahy, 24-Mar-2019.)
Hypotheses
Ref Expression
ptrest.0 (𝜑𝐴𝑉)
ptrest.1 (𝜑𝐹:𝐴⟶Top)
ptrest.2 ((𝜑𝑘𝐴) → 𝑆𝑊)
Assertion
Ref Expression
ptrest (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉
Allowed substitution hints:   𝑆(𝑘)   𝑊(𝑘)

Proof of Theorem ptrest
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 firest 17343 . . . 4 (fi‘(({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆)) = ((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)
2 snex 5378 . . . . . . . 8 { (∏t𝐹)} ∈ V
3 ptrest.0 . . . . . . . . . 10 (𝜑𝐴𝑉)
4 fvex 6844 . . . . . . . . . . 11 (𝐹𝑢) ∈ V
54rgenw 3052 . . . . . . . . . 10 𝑢𝐴 (𝐹𝑢) ∈ V
6 eqid 2733 . . . . . . . . . . 11 (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) = (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))
76mpoexxg 8016 . . . . . . . . . 10 ((𝐴𝑉 ∧ ∀𝑢𝐴 (𝐹𝑢) ∈ V) → (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V)
83, 5, 7sylancl 586 . . . . . . . . 9 (𝜑 → (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V)
9 rnexg 7841 . . . . . . . . 9 ((𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V → ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V)
108, 9syl 17 . . . . . . . 8 (𝜑 → ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V)
11 unexg 7685 . . . . . . . 8 (({ (∏t𝐹)} ∈ V ∧ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V) → ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ∈ V)
122, 10, 11sylancr 587 . . . . . . 7 (𝜑 → ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ∈ V)
13 ptrest.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝑆𝑊)
1413ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝑆𝑊)
15 ixpexg 8856 . . . . . . . 8 (∀𝑘𝐴 𝑆𝑊X𝑘𝐴 𝑆 ∈ V)
1614, 15syl 17 . . . . . . 7 (𝜑X𝑘𝐴 𝑆 ∈ V)
17 restval 17337 . . . . . . 7 ((({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ∈ V ∧ X𝑘𝐴 𝑆 ∈ V) → (({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆) = ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)))
1812, 16, 17syl2anc 584 . . . . . 6 (𝜑 → (({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆) = ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)))
19 mptun 6635 . . . . . . . . 9 (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)) = ((𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)))
2019rneqi 5883 . . . . . . . 8 ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)) = ran ((𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)))
21 rnun 6100 . . . . . . . 8 ran ((𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆))) = (ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)))
2220, 21eqtri 2756 . . . . . . 7 ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)) = (ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)))
23 elsni 4594 . . . . . . . . . . . . . 14 (𝑥 ∈ { (∏t𝐹)} → 𝑥 = (∏t𝐹))
2423ineq1d 4168 . . . . . . . . . . . . 13 (𝑥 ∈ { (∏t𝐹)} → (𝑥X𝑘𝐴 𝑆) = ( (∏t𝐹) ∩ X𝑘𝐴 𝑆))
2524mpteq2ia 5190 . . . . . . . . . . . 12 (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = (𝑥 ∈ { (∏t𝐹)} ↦ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆))
26 fvex 6844 . . . . . . . . . . . . . 14 (∏t𝐹) ∈ V
2726uniex 7683 . . . . . . . . . . . . 13 (∏t𝐹) ∈ V
2827inex1 5259 . . . . . . . . . . . . 13 ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) ∈ V
29 fmptsn 7110 . . . . . . . . . . . . 13 (( (∏t𝐹) ∈ V ∧ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) ∈ V) → {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩} = (𝑥 ∈ { (∏t𝐹)} ↦ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)))
3027, 28, 29mp2an 692 . . . . . . . . . . . 12 {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩} = (𝑥 ∈ { (∏t𝐹)} ↦ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆))
3125, 30eqtr4i 2759 . . . . . . . . . . 11 (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩}
3231rneqi 5883 . . . . . . . . . 10 ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = ran {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩}
3327rnsnop 6179 . . . . . . . . . 10 ran {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩} = {( (∏t𝐹) ∩ X𝑘𝐴 𝑆)}
3432, 33eqtri 2756 . . . . . . . . 9 ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = {( (∏t𝐹) ∩ X𝑘𝐴 𝑆)}
35 ptrest.1 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴⟶Top)
3635ffvelcdmda 7026 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ Top)
37 inss1 4186 . . . . . . . . . . . . . . 15 ( (𝐹𝑘) ∩ 𝑆) ⊆ (𝐹𝑘)
38 eqid 2733 . . . . . . . . . . . . . . . 16 (𝐹𝑘) = (𝐹𝑘)
3938restuni 23097 . . . . . . . . . . . . . . 15 (((𝐹𝑘) ∈ Top ∧ ( (𝐹𝑘) ∩ 𝑆) ⊆ (𝐹𝑘)) → ( (𝐹𝑘) ∩ 𝑆) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆)))
4036, 37, 39sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ( (𝐹𝑘) ∩ 𝑆) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆)))
41 fvex 6844 . . . . . . . . . . . . . . . . 17 (𝐹𝑘) ∈ V
4238restin 23101 . . . . . . . . . . . . . . . . 17 (((𝐹𝑘) ∈ V ∧ 𝑆𝑊) → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑘) ↾t (𝑆 (𝐹𝑘))))
4341, 13, 42sylancr 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑘) ↾t (𝑆 (𝐹𝑘))))
44 incom 4158 . . . . . . . . . . . . . . . . 17 (𝑆 (𝐹𝑘)) = ( (𝐹𝑘) ∩ 𝑆)
4544oveq2i 7366 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ↾t (𝑆 (𝐹𝑘))) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆))
4643, 45eqtrdi 2784 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆)))
4746unieqd 4873 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆)))
4840, 47eqtr4d 2771 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ( (𝐹𝑘) ∩ 𝑆) = ((𝐹𝑘) ↾t 𝑆))
4948ixpeq2dva 8846 . . . . . . . . . . . 12 (𝜑X𝑘𝐴 ( (𝐹𝑘) ∩ 𝑆) = X𝑘𝐴 ((𝐹𝑘) ↾t 𝑆))
50 ixpin 8857 . . . . . . . . . . . 12 X𝑘𝐴 ( (𝐹𝑘) ∩ 𝑆) = (X𝑘𝐴 (𝐹𝑘) ∩ X𝑘𝐴 𝑆)
51 nfcv 2895 . . . . . . . . . . . . . 14 𝑦 ((𝐹𝑘) ↾t 𝑆)
52 nfcv 2895 . . . . . . . . . . . . . . . 16 𝑘(𝐹𝑦)
53 nfcv 2895 . . . . . . . . . . . . . . . 16 𝑘t
54 nfcsb1v 3870 . . . . . . . . . . . . . . . 16 𝑘𝑦 / 𝑘𝑆
5552, 53, 54nfov 7385 . . . . . . . . . . . . . . 15 𝑘((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆)
5655nfuni 4867 . . . . . . . . . . . . . 14 𝑘 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆)
57 fveq2 6831 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (𝐹𝑘) = (𝐹𝑦))
58 csbeq1a 3860 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦𝑆 = 𝑦 / 𝑘𝑆)
5957, 58oveq12d 7373 . . . . . . . . . . . . . . 15 (𝑘 = 𝑦 → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6059unieqd 4873 . . . . . . . . . . . . . 14 (𝑘 = 𝑦 ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6151, 56, 60cbvixp 8848 . . . . . . . . . . . . 13 X𝑘𝐴 ((𝐹𝑘) ↾t 𝑆) = X𝑦𝐴 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆)
62 ixpeq2 8845 . . . . . . . . . . . . . 14 (∀𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆) → X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = X𝑦𝐴 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
63 ovex 7388 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆) ∈ V
64 nfcv 2895 . . . . . . . . . . . . . . . . 17 𝑘𝑦
65 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)) = (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))
6664, 55, 59, 65fvmptf 6959 . . . . . . . . . . . . . . . 16 ((𝑦𝐴 ∧ ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆) ∈ V) → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6763, 66mpan2 691 . . . . . . . . . . . . . . 15 (𝑦𝐴 → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6867unieqd 4873 . . . . . . . . . . . . . 14 (𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6962, 68mprg 3054 . . . . . . . . . . . . 13 X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = X𝑦𝐴 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆)
7061, 69eqtr4i 2759 . . . . . . . . . . . 12 X𝑘𝐴 ((𝐹𝑘) ↾t 𝑆) = X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦)
7149, 50, 703eqtr3g 2791 . . . . . . . . . . 11 (𝜑 → (X𝑘𝐴 (𝐹𝑘) ∩ X𝑘𝐴 𝑆) = X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦))
72 eqid 2733 . . . . . . . . . . . . . 14 (∏t𝐹) = (∏t𝐹)
7372ptuni 23529 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
743, 35, 73syl2anc 584 . . . . . . . . . . . 12 (𝜑X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
7574ineq1d 4168 . . . . . . . . . . 11 (𝜑 → (X𝑘𝐴 (𝐹𝑘) ∩ X𝑘𝐴 𝑆) = ( (∏t𝐹) ∩ X𝑘𝐴 𝑆))
76 resttop 23095 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ Top ∧ 𝑆𝑊) → ((𝐹𝑘) ↾t 𝑆) ∈ Top)
7736, 13, 76syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝐹𝑘) ↾t 𝑆) ∈ Top)
7877fmpttd 7057 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)):𝐴⟶Top)
79 eqid 2733 . . . . . . . . . . . . 13 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))
8079ptuni 23529 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)):𝐴⟶Top) → X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
813, 78, 80syl2anc 584 . . . . . . . . . . 11 (𝜑X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
8271, 75, 813eqtr3d 2776 . . . . . . . . . 10 (𝜑 → ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
8382sneqd 4589 . . . . . . . . 9 (𝜑 → {( (∏t𝐹) ∩ X𝑘𝐴 𝑆)} = { (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))})
8434, 83eqtrid 2780 . . . . . . . 8 (𝜑 → ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = { (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))})
85 vex 3441 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤 ∈ V
8685elixp 8838 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤X𝑘𝐴 𝑆 ↔ (𝑤 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑤𝑘) ∈ 𝑆))
8786simprbi 496 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤X𝑘𝐴 𝑆 → ∀𝑘𝐴 (𝑤𝑘) ∈ 𝑆)
88 nfcsb1v 3870 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝑢 / 𝑘𝑆
8988nfel2 2914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑤𝑢) ∈ 𝑢 / 𝑘𝑆
90 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑢 → (𝑤𝑘) = (𝑤𝑢))
91 csbeq1a 3860 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑢𝑆 = 𝑢 / 𝑘𝑆)
9290, 91eleq12d 2827 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑢 → ((𝑤𝑘) ∈ 𝑆 ↔ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))
9389, 92rspc 3561 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢𝐴 → (∀𝑘𝐴 (𝑤𝑘) ∈ 𝑆 → (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))
9487, 93syl5 34 . . . . . . . . . . . . . . . . . . . . 21 (𝑢𝐴 → (𝑤X𝑘𝐴 𝑆 → (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))
9594pm4.71d 561 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝐴 → (𝑤X𝑘𝐴 𝑆 ↔ (𝑤X𝑘𝐴 𝑆 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)))
9695anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑢𝐴 → (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆) ↔ ((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ (𝑤X𝑘𝐴 𝑆 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))))
97 an4 656 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ (𝑤X𝑘𝐴 𝑆 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)) ↔ ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ ((𝑤𝑢) ∈ 𝑣 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)))
98 elin 3914 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆) ↔ ((𝑤𝑢) ∈ 𝑣 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))
9998anbi2i 623 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)) ↔ ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ ((𝑤𝑢) ∈ 𝑣 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)))
10097, 99bitr4i 278 . . . . . . . . . . . . . . . . . . 19 (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ (𝑤X𝑘𝐴 𝑆 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)) ↔ ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)))
10196, 100bitrdi 287 . . . . . . . . . . . . . . . . . 18 (𝑢𝐴 → (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆) ↔ ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))))
102 elin 3914 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) ↔ (𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆))
10382eleq2d 2819 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑤 ∈ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) ↔ 𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))))
104102, 103bitr3id 285 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ↔ 𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))))
105104anbi1d 631 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)) ↔ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))))
106101, 105sylan9bbr 510 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝐴) → (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆) ↔ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))))
107106abbidv 2799 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝐴) → {𝑤 ∣ ((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆)} = {𝑤 ∣ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))})
108 eqid 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑤 (∏t𝐹) ↦ (𝑤𝑢)) = (𝑤 (∏t𝐹) ↦ (𝑤𝑢))
109108mptpreima 6193 . . . . . . . . . . . . . . . . . . 19 ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) = {𝑤 (∏t𝐹) ∣ (𝑤𝑢) ∈ 𝑣}
110 df-rab 3397 . . . . . . . . . . . . . . . . . . 19 {𝑤 (∏t𝐹) ∣ (𝑤𝑢) ∈ 𝑣} = {𝑤 ∣ (𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣)}
111109, 110eqtr2i 2757 . . . . . . . . . . . . . . . . . 18 {𝑤 ∣ (𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣)} = ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)
112 abid2 2870 . . . . . . . . . . . . . . . . . 18 {𝑤𝑤X𝑘𝐴 𝑆} = X𝑘𝐴 𝑆
113111, 112ineq12i 4167 . . . . . . . . . . . . . . . . 17 ({𝑤 ∣ (𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣)} ∩ {𝑤𝑤X𝑘𝐴 𝑆}) = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)
114 inab 4258 . . . . . . . . . . . . . . . . 17 ({𝑤 ∣ (𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣)} ∩ {𝑤𝑤X𝑘𝐴 𝑆}) = {𝑤 ∣ ((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆)}
115113, 114eqtr3i 2758 . . . . . . . . . . . . . . . 16 (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) = {𝑤 ∣ ((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆)}
116 eqid 2733 . . . . . . . . . . . . . . . . . 18 (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) = (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢))
117116mptpreima 6193 . . . . . . . . . . . . . . . . 17 ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) = {𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∣ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)}
118 df-rab 3397 . . . . . . . . . . . . . . . . 17 {𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∣ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)} = {𝑤 ∣ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))}
119117, 118eqtri 2756 . . . . . . . . . . . . . . . 16 ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) = {𝑤 ∣ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))}
120107, 115, 1193eqtr4g 2793 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝐴) → (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)))
121120eqeq2d 2744 . . . . . . . . . . . . . 14 ((𝜑𝑢𝐴) → (𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ 𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆))))
122121rexbidv 3157 . . . . . . . . . . . . 13 ((𝜑𝑢𝐴) → (∃𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑣 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆))))
123 ineq1 4162 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑦 → (𝑣𝑢 / 𝑘𝑆) = (𝑦𝑢 / 𝑘𝑆))
124123imaeq2d 6016 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆)))
125124eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → (𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) ↔ 𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
126125cbvrexvw 3212 . . . . . . . . . . . . 13 (∃𝑣 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆)))
127122, 126bitrdi 287 . . . . . . . . . . . 12 ((𝜑𝑢𝐴) → (∃𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
128 vex 3441 . . . . . . . . . . . . . . 15 𝑦 ∈ V
129128inex1 5259 . . . . . . . . . . . . . 14 (𝑦𝑢 / 𝑘𝑆) ∈ V
130129a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑢𝐴) ∧ 𝑦 ∈ (𝐹𝑢)) → (𝑦𝑢 / 𝑘𝑆) ∈ V)
131 ovex 7388 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆) ∈ V
132 nfcv 2895 . . . . . . . . . . . . . . . . . 18 𝑘𝑢
133 nfcv 2895 . . . . . . . . . . . . . . . . . . 19 𝑘(𝐹𝑢)
134133, 53, 88nfov 7385 . . . . . . . . . . . . . . . . . 18 𝑘((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆)
135 fveq2 6831 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑢 → (𝐹𝑘) = (𝐹𝑢))
136135, 91oveq12d 7373 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆))
137132, 134, 136, 65fvmptf 6959 . . . . . . . . . . . . . . . . 17 ((𝑢𝐴 ∧ ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆) ∈ V) → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) = ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆))
138131, 137mpan2 691 . . . . . . . . . . . . . . . 16 (𝑢𝐴 → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) = ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆))
139138adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝐴) → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) = ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆))
140139eleq2d 2819 . . . . . . . . . . . . . 14 ((𝜑𝑢𝐴) → (𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↔ 𝑣 ∈ ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆)))
141 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑢𝐴)
142 nfcsb1v 3870 . . . . . . . . . . . . . . . . . 18 𝑘𝑢 / 𝑘𝑊
14388, 142nfel 2910 . . . . . . . . . . . . . . . . 17 𝑘𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊
144141, 143nfim 1897 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑢𝐴) → 𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊)
145 eleq1w 2816 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 → (𝑘𝐴𝑢𝐴))
146145anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑢 → ((𝜑𝑘𝐴) ↔ (𝜑𝑢𝐴)))
147 csbeq1a 3860 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢𝑊 = 𝑢 / 𝑘𝑊)
14891, 147eleq12d 2827 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑢 → (𝑆𝑊𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊))
149146, 148imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑢 → (((𝜑𝑘𝐴) → 𝑆𝑊) ↔ ((𝜑𝑢𝐴) → 𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊)))
150144, 149, 13chvarfv 2245 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝐴) → 𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊)
151 elrest 17338 . . . . . . . . . . . . . . 15 (((𝐹𝑢) ∈ V ∧ 𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊) → (𝑣 ∈ ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑣 = (𝑦𝑢 / 𝑘𝑆)))
1524, 150, 151sylancr 587 . . . . . . . . . . . . . 14 ((𝜑𝑢𝐴) → (𝑣 ∈ ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑣 = (𝑦𝑢 / 𝑘𝑆)))
153140, 152bitrd 279 . . . . . . . . . . . . 13 ((𝜑𝑢𝐴) → (𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑣 = (𝑦𝑢 / 𝑘𝑆)))
154 imaeq2 6012 . . . . . . . . . . . . . . 15 (𝑣 = (𝑦𝑢 / 𝑘𝑆) → ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣) = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆)))
155154eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑣 = (𝑦𝑢 / 𝑘𝑆) → (𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣) ↔ 𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
156155adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑢𝐴) ∧ 𝑣 = (𝑦𝑢 / 𝑘𝑆)) → (𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣) ↔ 𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
157130, 153, 156rexxfr2d 5353 . . . . . . . . . . . 12 ((𝜑𝑢𝐴) → (∃𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
158127, 157bitr4d 282 . . . . . . . . . . 11 ((𝜑𝑢𝐴) → (∃𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))
159158rexbidva 3155 . . . . . . . . . 10 (𝜑 → (∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))
160159abbidv 2799 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)} = {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)})
161 eqid 2733 . . . . . . . . . . 11 (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)) = (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆))
162161rnmpt 5903 . . . . . . . . . 10 ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)) = {𝑦 ∣ ∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆)}
163 nfre1 3258 . . . . . . . . . . 11 𝑥𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆)
164 nfv 1915 . . . . . . . . . . 11 𝑦𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)
16527mptex 7166 . . . . . . . . . . . . . . . 16 (𝑤 (∏t𝐹) ↦ (𝑤𝑢)) ∈ V
166165cnvex 7864 . . . . . . . . . . . . . . 15 (𝑤 (∏t𝐹) ↦ (𝑤𝑢)) ∈ V
167166imaex 7853 . . . . . . . . . . . . . 14 ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∈ V
168167rgen2w 3053 . . . . . . . . . . . . 13 𝑢𝐴𝑣 ∈ (𝐹𝑢)((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∈ V
169 ineq1 4162 . . . . . . . . . . . . . . 15 (𝑥 = ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) → (𝑥X𝑘𝐴 𝑆) = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆))
170169eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑥 = ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) → (𝑦 = (𝑥X𝑘𝐴 𝑆) ↔ 𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
1716, 170rexrnmpo 7495 . . . . . . . . . . . . 13 (∀𝑢𝐴𝑣 ∈ (𝐹𝑢)((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∈ V → (∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
172168, 171ax-mp 5 . . . . . . . . . . . 12 (∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆))
173 eqeq1 2737 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ 𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
1741732rexbidv 3198 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
175172, 174bitrid 283 . . . . . . . . . . 11 (𝑦 = 𝑥 → (∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
176163, 164, 175cbvabw 2804 . . . . . . . . . 10 {𝑦 ∣ ∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆)} = {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)}
177162, 176eqtri 2756 . . . . . . . . 9 ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)) = {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)}
178 eqid 2733 . . . . . . . . . 10 (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)) = (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))
179178rnmpo 7488 . . . . . . . . 9 ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)) = {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)}
180160, 177, 1793eqtr4g 2793 . . . . . . . 8 (𝜑 → ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)) = ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))
18184, 180uneq12d 4118 . . . . . . 7 (𝜑 → (ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆))) = ({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))
18222, 181eqtrid 2780 . . . . . 6 (𝜑 → ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)) = ({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))
18318, 182eqtrd 2768 . . . . 5 (𝜑 → (({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆) = ({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))
184183fveq2d 6835 . . . 4 (𝜑 → (fi‘(({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆)) = (fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))))
1851, 184eqtr3id 2782 . . 3 (𝜑 → ((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆) = (fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))))
186185fveq2d 6835 . 2 (𝜑 → (topGen‘((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)) = (topGen‘(fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))))
187 eqid 2733 . . . . . 6 (∏t𝐹) = (∏t𝐹)
18872, 187, 6ptval2 23536 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) = (topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))))
1893, 35, 188syl2anc 584 . . . 4 (𝜑 → (∏t𝐹) = (topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))))
190189oveq1d 7370 . . 3 (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = ((topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))) ↾t X𝑘𝐴 𝑆))
191 fvex 6844 . . . 4 (fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ∈ V
192 tgrest 23094 . . . 4 (((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ∈ V ∧ X𝑘𝐴 𝑆 ∈ V) → (topGen‘((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)) = ((topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))) ↾t X𝑘𝐴 𝑆))
193191, 16, 192sylancr 587 . . 3 (𝜑 → (topGen‘((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)) = ((topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))) ↾t X𝑘𝐴 𝑆))
194190, 193eqtr4d 2771 . 2 (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = (topGen‘((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)))
195 eqid 2733 . . . 4 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))
19679, 195, 178ptval2 23536 . . 3 ((𝐴𝑉 ∧ (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)):𝐴⟶Top) → (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) = (topGen‘(fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))))
1973, 78, 196syl2anc 584 . 2 (𝜑 → (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) = (topGen‘(fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))))
198186, 194, 1973eqtr4d 2778 1 (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  csb 3846  cun 3896  cin 3897  wss 3898  {csn 4577  cop 4583   cuni 4860  cmpt 5176  ccnv 5620  ran crn 5622  cima 5624   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  cmpo 7357  Xcixp 8831  ficfi 9305  t crest 17331  topGenctg 17348  tcpt 17349  Topctop 22828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-1o 8394  df-2o 8395  df-ixp 8832  df-en 8880  df-dom 8881  df-fin 8883  df-fi 9306  df-rest 17333  df-topgen 17354  df-pt 17355  df-top 22829  df-topon 22846  df-bases 22881
This theorem is referenced by:  poimirlem30  37763
  Copyright terms: Public domain W3C validator