![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmptap | Structured version Visualization version GIF version |
Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fmptap.0a | ⊢ 𝐴 ∈ V |
fmptap.0b | ⊢ 𝐵 ∈ V |
fmptap.1 | ⊢ (𝑅 ∪ {𝐴}) = 𝑆 |
fmptap.2 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
fmptap | ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptap.0a | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | fmptap.0b | . . . . 5 ⊢ 𝐵 ∈ V | |
3 | fmptsn 7201 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | |
4 | 1, 2, 3 | mp2an 691 | . . . 4 ⊢ {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵) |
5 | elsni 4665 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
6 | fmptap.2 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝐶 = 𝐵) |
8 | 7 | mpteq2ia 5269 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵) |
9 | 4, 8 | eqtr4i 2771 | . . 3 ⊢ {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐶) |
10 | 9 | uneq2i 4188 | . 2 ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) |
11 | mptun 6726 | . 2 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) | |
12 | fmptap.1 | . . 3 ⊢ (𝑅 ∪ {𝐴}) = 𝑆 | |
13 | 12 | mpteq1i 5262 | . 2 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
14 | 10, 11, 13 | 3eqtr2i 2774 | 1 ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 {csn 4648 〈cop 4654 ↦ cmpt 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |