MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptap Structured version   Visualization version   GIF version

Theorem fmptap 7126
Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptap.0a 𝐴 ∈ V
fmptap.0b 𝐵 ∈ V
fmptap.1 (𝑅 ∪ {𝐴}) = 𝑆
fmptap.2 (𝑥 = 𝐴𝐶 = 𝐵)
Assertion
Ref Expression
fmptap ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem fmptap
StepHypRef Expression
1 fmptap.0a . . . . 5 𝐴 ∈ V
2 fmptap.0b . . . . 5 𝐵 ∈ V
3 fmptsn 7123 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
41, 2, 3mp2an 692 . . . 4 {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵)
5 elsni 4602 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
6 fmptap.2 . . . . . 6 (𝑥 = 𝐴𝐶 = 𝐵)
75, 6syl 17 . . . . 5 (𝑥 ∈ {𝐴} → 𝐶 = 𝐵)
87mpteq2ia 5197 . . . 4 (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵)
94, 8eqtr4i 2755 . . 3 {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐶)
109uneq2i 4124 . 2 ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
11 mptun 6646 . 2 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
12 fmptap.1 . . 3 (𝑅 ∪ {𝐴}) = 𝑆
1312mpteq1i 5193 . 2 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥𝑆𝐶)
1410, 11, 133eqtr2i 2758 1 ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  {csn 4585  cop 4591  cmpt 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator