| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmptap | Structured version Visualization version GIF version | ||
| Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fmptap.0a | ⊢ 𝐴 ∈ V |
| fmptap.0b | ⊢ 𝐵 ∈ V |
| fmptap.1 | ⊢ (𝑅 ∪ {𝐴}) = 𝑆 |
| fmptap.2 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| fmptap | ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptap.0a | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | fmptap.0b | . . . . 5 ⊢ 𝐵 ∈ V | |
| 3 | fmptsn 7159 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | |
| 4 | 1, 2, 3 | mp2an 692 | . . . 4 ⊢ {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵) |
| 5 | elsni 4618 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 6 | fmptap.2 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝐶 = 𝐵) |
| 8 | 7 | mpteq2ia 5216 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵) |
| 9 | 4, 8 | eqtr4i 2761 | . . 3 ⊢ {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐶) |
| 10 | 9 | uneq2i 4140 | . 2 ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) |
| 11 | mptun 6684 | . 2 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) | |
| 12 | fmptap.1 | . . 3 ⊢ (𝑅 ∪ {𝐴}) = 𝑆 | |
| 13 | 12 | mpteq1i 5211 | . 2 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
| 14 | 10, 11, 13 | 3eqtr2i 2764 | 1 ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 {csn 4601 〈cop 4607 ↦ cmpt 5201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |