Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fmptap | Structured version Visualization version GIF version |
Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fmptap.0a | ⊢ 𝐴 ∈ V |
fmptap.0b | ⊢ 𝐵 ∈ V |
fmptap.1 | ⊢ (𝑅 ∪ {𝐴}) = 𝑆 |
fmptap.2 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
fmptap | ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptap.0a | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | fmptap.0b | . . . . 5 ⊢ 𝐵 ∈ V | |
3 | fmptsn 7039 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵)) | |
4 | 1, 2, 3 | mp2an 689 | . . . 4 ⊢ {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐵) |
5 | elsni 4578 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
6 | fmptap.2 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐵) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝐶 = 𝐵) |
8 | 7 | mpteq2ia 5177 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵) |
9 | 4, 8 | eqtr4i 2769 | . . 3 ⊢ {〈𝐴, 𝐵〉} = (𝑥 ∈ {𝐴} ↦ 𝐶) |
10 | 9 | uneq2i 4094 | . 2 ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) |
11 | mptun 6579 | . 2 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)) | |
12 | fmptap.1 | . . 3 ⊢ (𝑅 ∪ {𝐴}) = 𝑆 | |
13 | 12 | mpteq1i 5170 | . 2 ⊢ (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
14 | 10, 11, 13 | 3eqtr2i 2772 | 1 ⊢ ((𝑥 ∈ 𝑅 ↦ 𝐶) ∪ {〈𝐴, 𝐵〉}) = (𝑥 ∈ 𝑆 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 {csn 4561 〈cop 4567 ↦ cmpt 5157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |