MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptap Structured version   Visualization version   GIF version

Theorem fmptap 7042
Description: Append an additional value to a function. (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptap.0a 𝐴 ∈ V
fmptap.0b 𝐵 ∈ V
fmptap.1 (𝑅 ∪ {𝐴}) = 𝑆
fmptap.2 (𝑥 = 𝐴𝐶 = 𝐵)
Assertion
Ref Expression
fmptap ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem fmptap
StepHypRef Expression
1 fmptap.0a . . . . 5 𝐴 ∈ V
2 fmptap.0b . . . . 5 𝐵 ∈ V
3 fmptsn 7039 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵))
41, 2, 3mp2an 689 . . . 4 {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐵)
5 elsni 4578 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
6 fmptap.2 . . . . . 6 (𝑥 = 𝐴𝐶 = 𝐵)
75, 6syl 17 . . . . 5 (𝑥 ∈ {𝐴} → 𝐶 = 𝐵)
87mpteq2ia 5177 . . . 4 (𝑥 ∈ {𝐴} ↦ 𝐶) = (𝑥 ∈ {𝐴} ↦ 𝐵)
94, 8eqtr4i 2769 . . 3 {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐶)
109uneq2i 4094 . 2 ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
11 mptun 6579 . 2 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
12 fmptap.1 . . 3 (𝑅 ∪ {𝐴}) = 𝑆
1312mpteq1i 5170 . 2 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥𝑆𝐶)
1410, 11, 133eqtr2i 2772 1 ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  {csn 4561  cop 4567  cmpt 5157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator