Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrltne | Structured version Visualization version GIF version |
Description: 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
xrltne | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 864 | . . . 4 ⊢ (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) | |
2 | xrltso 12866 | . . . . . 6 ⊢ < Or ℝ* | |
3 | sotrieq 5532 | . . . . . 6 ⊢ (( < Or ℝ* ∧ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) → (𝐴 = 𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
4 | 2, 3 | mpan 687 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
5 | 4 | necon2abid 2988 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) ↔ 𝐴 ≠ 𝐵)) |
6 | 1, 5 | syl5ib 243 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≠ 𝐵)) |
7 | 6 | 3impia 1116 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐴 ≠ 𝐵) |
8 | 7 | necomd 3001 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 class class class wbr 5079 Or wor 5502 ℝ*cxr 11001 < clt 11002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-pre-lttri 10938 ax-pre-lttrn 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 |
This theorem is referenced by: xmulpnf1 12999 supxrbnd 13053 sgnp 14791 sgnn 14795 xrsdsreclblem 20634 supxrnemnf 31079 lfuhgr2 33068 acycgr2v 33100 xrgtned 42824 icoiccdif 43025 cncfiooicclem1 43397 |
Copyright terms: Public domain | W3C validator |