MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xblpnfps Structured version   Visualization version   GIF version

Theorem xblpnfps 23002
Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
xblpnfps ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))

Proof of Theorem xblpnfps
StepHypRef Expression
1 pnfxr 10684 . . 3 +∞ ∈ ℝ*
2 elblps 22994 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < +∞)))
31, 2mp3an3 1447 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < +∞)))
4 psmetcl 22914 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (𝑃𝐷𝐴) ∈ ℝ*)
5 psmetge0 22919 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → 0 ≤ (𝑃𝐷𝐴))
6 ge0nemnf 12554 . . . . . . . 8 (((𝑃𝐷𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝐴)) → (𝑃𝐷𝐴) ≠ -∞)
74, 5, 6syl2anc 587 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (𝑃𝐷𝐴) ≠ -∞)
8 ngtmnft 12547 . . . . . . . . 9 ((𝑃𝐷𝐴) ∈ ℝ* → ((𝑃𝐷𝐴) = -∞ ↔ ¬ -∞ < (𝑃𝐷𝐴)))
94, 8syl 17 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → ((𝑃𝐷𝐴) = -∞ ↔ ¬ -∞ < (𝑃𝐷𝐴)))
109necon2abid 3029 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (-∞ < (𝑃𝐷𝐴) ↔ (𝑃𝐷𝐴) ≠ -∞))
117, 10mpbird 260 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → -∞ < (𝑃𝐷𝐴))
1211biantrurd 536 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → ((𝑃𝐷𝐴) < +∞ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞)))
13 xrrebnd 12549 . . . . . 6 ((𝑃𝐷𝐴) ∈ ℝ* → ((𝑃𝐷𝐴) ∈ ℝ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞)))
144, 13syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → ((𝑃𝐷𝐴) ∈ ℝ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞)))
1512, 14bitr4d 285 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → ((𝑃𝐷𝐴) < +∞ ↔ (𝑃𝐷𝐴) ∈ ℝ))
16153expa 1115 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴𝑋) → ((𝑃𝐷𝐴) < +∞ ↔ (𝑃𝐷𝐴) ∈ ℝ))
1716pm5.32da 582 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → ((𝐴𝑋 ∧ (𝑃𝐷𝐴) < +∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
183, 17bitrd 282 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  PsMetcpsmet 20075  ballcbl 20078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-psmet 20083  df-bl 20086
This theorem is referenced by:  xblss2ps  23008
  Copyright terms: Public domain W3C validator