MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xblpnfps Structured version   Visualization version   GIF version

Theorem xblpnfps 24369
Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
xblpnfps ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))

Proof of Theorem xblpnfps
StepHypRef Expression
1 pnfxr 11298 . . 3 +∞ ∈ ℝ*
2 elblps 24361 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < +∞)))
31, 2mp3an3 1451 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < +∞)))
4 psmetcl 24281 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (𝑃𝐷𝐴) ∈ ℝ*)
5 psmetge0 24286 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → 0 ≤ (𝑃𝐷𝐴))
6 ge0nemnf 13198 . . . . . . . 8 (((𝑃𝐷𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝐴)) → (𝑃𝐷𝐴) ≠ -∞)
74, 5, 6syl2anc 584 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (𝑃𝐷𝐴) ≠ -∞)
8 ngtmnft 13191 . . . . . . . . 9 ((𝑃𝐷𝐴) ∈ ℝ* → ((𝑃𝐷𝐴) = -∞ ↔ ¬ -∞ < (𝑃𝐷𝐴)))
94, 8syl 17 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → ((𝑃𝐷𝐴) = -∞ ↔ ¬ -∞ < (𝑃𝐷𝐴)))
109necon2abid 2973 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (-∞ < (𝑃𝐷𝐴) ↔ (𝑃𝐷𝐴) ≠ -∞))
117, 10mpbird 257 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → -∞ < (𝑃𝐷𝐴))
1211biantrurd 532 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → ((𝑃𝐷𝐴) < +∞ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞)))
13 xrrebnd 13193 . . . . . 6 ((𝑃𝐷𝐴) ∈ ℝ* → ((𝑃𝐷𝐴) ∈ ℝ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞)))
144, 13syl 17 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → ((𝑃𝐷𝐴) ∈ ℝ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞)))
1512, 14bitr4d 282 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → ((𝑃𝐷𝐴) < +∞ ↔ (𝑃𝐷𝐴) ∈ ℝ))
16153expa 1118 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴𝑋) → ((𝑃𝐷𝐴) < +∞ ↔ (𝑃𝐷𝐴) ∈ ℝ))
1716pm5.32da 579 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → ((𝐴𝑋 ∧ (𝑃𝐷𝐴) < +∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
183, 17bitrd 279 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5125  cfv 6542  (class class class)co 7414  cr 11137  0cc0 11138  +∞cpnf 11275  -∞cmnf 11276  *cxr 11277   < clt 11278  cle 11279  PsMetcpsmet 21315  ballcbl 21318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-po 5574  df-so 5575  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-2 12312  df-rp 13018  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-psmet 21323  df-bl 21326
This theorem is referenced by:  xblss2ps  24375
  Copyright terms: Public domain W3C validator