MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xblpnfps Structured version   Visualization version   GIF version

Theorem xblpnfps 24252
Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
xblpnfps ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))

Proof of Theorem xblpnfps
StepHypRef Expression
1 pnfxr 11269 . . 3 +∞ ∈ ℝ*
2 elblps 24244 . . 3 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ +∞ ∈ ℝ*) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < +∞)))
31, 2mp3an3 1446 . 2 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < +∞)))
4 psmetcl 24164 . . . . . . . 8 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (𝑃𝐷𝐴) ∈ ℝ*)
5 psmetge0 24169 . . . . . . . 8 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ 0 ≀ (𝑃𝐷𝐴))
6 ge0nemnf 13155 . . . . . . . 8 (((𝑃𝐷𝐴) ∈ ℝ* ∧ 0 ≀ (𝑃𝐷𝐴)) β†’ (𝑃𝐷𝐴) β‰  -∞)
74, 5, 6syl2anc 583 . . . . . . 7 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (𝑃𝐷𝐴) β‰  -∞)
8 ngtmnft 13148 . . . . . . . . 9 ((𝑃𝐷𝐴) ∈ ℝ* β†’ ((𝑃𝐷𝐴) = -∞ ↔ Β¬ -∞ < (𝑃𝐷𝐴)))
94, 8syl 17 . . . . . . . 8 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ ((𝑃𝐷𝐴) = -∞ ↔ Β¬ -∞ < (𝑃𝐷𝐴)))
109necon2abid 2977 . . . . . . 7 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (-∞ < (𝑃𝐷𝐴) ↔ (𝑃𝐷𝐴) β‰  -∞))
117, 10mpbird 257 . . . . . 6 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ -∞ < (𝑃𝐷𝐴))
1211biantrurd 532 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ ((𝑃𝐷𝐴) < +∞ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞)))
13 xrrebnd 13150 . . . . . 6 ((𝑃𝐷𝐴) ∈ ℝ* β†’ ((𝑃𝐷𝐴) ∈ ℝ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞)))
144, 13syl 17 . . . . 5 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ ((𝑃𝐷𝐴) ∈ ℝ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞)))
1512, 14bitr4d 282 . . . 4 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ ((𝑃𝐷𝐴) < +∞ ↔ (𝑃𝐷𝐴) ∈ ℝ))
16153expa 1115 . . 3 (((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) ∧ 𝐴 ∈ 𝑋) β†’ ((𝑃𝐷𝐴) < +∞ ↔ (𝑃𝐷𝐴) ∈ ℝ))
1716pm5.32da 578 . 2 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < +∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
183, 17bitrd 279 1 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  β„cr 11108  0cc0 11109  +∞cpnf 11246  -∞cmnf 11247  β„*cxr 11248   < clt 11249   ≀ cle 11250  PsMetcpsmet 21220  ballcbl 21223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-2 12276  df-rp 12978  df-xneg 13095  df-xadd 13096  df-xmul 13097  df-psmet 21228  df-bl 21231
This theorem is referenced by:  xblss2ps  24258
  Copyright terms: Public domain W3C validator