![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xblpnf | Structured version Visualization version GIF version |
Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xblpnf | β’ ((π· β (βMetβπ) β§ π β π) β (π΄ β (π(ballβπ·)+β) β (π΄ β π β§ (ππ·π΄) β β))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 11264 | . . 3 β’ +β β β* | |
2 | elbl 23885 | . . 3 β’ ((π· β (βMetβπ) β§ π β π β§ +β β β*) β (π΄ β (π(ballβπ·)+β) β (π΄ β π β§ (ππ·π΄) < +β))) | |
3 | 1, 2 | mp3an3 1450 | . 2 β’ ((π· β (βMetβπ) β§ π β π) β (π΄ β (π(ballβπ·)+β) β (π΄ β π β§ (ππ·π΄) < +β))) |
4 | xmetcl 23828 | . . . . . . . 8 β’ ((π· β (βMetβπ) β§ π β π β§ π΄ β π) β (ππ·π΄) β β*) | |
5 | xmetge0 23841 | . . . . . . . 8 β’ ((π· β (βMetβπ) β§ π β π β§ π΄ β π) β 0 β€ (ππ·π΄)) | |
6 | ge0nemnf 13148 | . . . . . . . 8 β’ (((ππ·π΄) β β* β§ 0 β€ (ππ·π΄)) β (ππ·π΄) β -β) | |
7 | 4, 5, 6 | syl2anc 584 | . . . . . . 7 β’ ((π· β (βMetβπ) β§ π β π β§ π΄ β π) β (ππ·π΄) β -β) |
8 | ngtmnft 13141 | . . . . . . . . 9 β’ ((ππ·π΄) β β* β ((ππ·π΄) = -β β Β¬ -β < (ππ·π΄))) | |
9 | 4, 8 | syl 17 | . . . . . . . 8 β’ ((π· β (βMetβπ) β§ π β π β§ π΄ β π) β ((ππ·π΄) = -β β Β¬ -β < (ππ·π΄))) |
10 | 9 | necon2abid 2983 | . . . . . . 7 β’ ((π· β (βMetβπ) β§ π β π β§ π΄ β π) β (-β < (ππ·π΄) β (ππ·π΄) β -β)) |
11 | 7, 10 | mpbird 256 | . . . . . 6 β’ ((π· β (βMetβπ) β§ π β π β§ π΄ β π) β -β < (ππ·π΄)) |
12 | 11 | biantrurd 533 | . . . . 5 β’ ((π· β (βMetβπ) β§ π β π β§ π΄ β π) β ((ππ·π΄) < +β β (-β < (ππ·π΄) β§ (ππ·π΄) < +β))) |
13 | xrrebnd 13143 | . . . . . 6 β’ ((ππ·π΄) β β* β ((ππ·π΄) β β β (-β < (ππ·π΄) β§ (ππ·π΄) < +β))) | |
14 | 4, 13 | syl 17 | . . . . 5 β’ ((π· β (βMetβπ) β§ π β π β§ π΄ β π) β ((ππ·π΄) β β β (-β < (ππ·π΄) β§ (ππ·π΄) < +β))) |
15 | 12, 14 | bitr4d 281 | . . . 4 β’ ((π· β (βMetβπ) β§ π β π β§ π΄ β π) β ((ππ·π΄) < +β β (ππ·π΄) β β)) |
16 | 15 | 3expa 1118 | . . 3 β’ (((π· β (βMetβπ) β§ π β π) β§ π΄ β π) β ((ππ·π΄) < +β β (ππ·π΄) β β)) |
17 | 16 | pm5.32da 579 | . 2 β’ ((π· β (βMetβπ) β§ π β π) β ((π΄ β π β§ (ππ·π΄) < +β) β (π΄ β π β§ (ππ·π΄) β β))) |
18 | 3, 17 | bitrd 278 | 1 β’ ((π· β (βMetβπ) β§ π β π) β (π΄ β (π(ballβπ·)+β) β (π΄ β π β§ (ππ·π΄) β β))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 class class class wbr 5147 βcfv 6540 (class class class)co 7405 βcr 11105 0cc0 11106 +βcpnf 11241 -βcmnf 11242 β*cxr 11243 < clt 11244 β€ cle 11245 βMetcxmet 20921 ballcbl 20923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-2 12271 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-psmet 20928 df-xmet 20929 df-bl 20931 |
This theorem is referenced by: blpnf 23894 xmetec 23931 metdstri 24358 |
Copyright terms: Public domain | W3C validator |