MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlt2add Structured version   Visualization version   GIF version

Theorem xlt2add 13265
Description: Extended real version of lt2add 11723. Note that ltleadd 11721, which has weaker assumptions, is not true for the extended reals (since 0 + +∞ < 1 + +∞ fails). (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xlt2add (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))

Proof of Theorem xlt2add
StepHypRef Expression
1 xaddcl 13244 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
213ad2ant1 1131 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
32adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
4 simp1l 1195 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 ∈ ℝ*)
5 simp2r 1198 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ∈ ℝ*)
6 xaddcl 13244 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
74, 5, 6syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
87adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
9 xaddcl 13244 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
1093ad2ant2 1132 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
1110adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
12 simp3r 1200 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 < 𝐷)
1312adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 < 𝐷)
14 simp1r 1196 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 ∈ ℝ*)
1514adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ*)
165adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ*)
17 simprl 770 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
18 xltadd2 13262 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝐴 ∈ ℝ) → (𝐵 < 𝐷 ↔ (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷)))
1915, 16, 17, 18syl3anc 1369 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 < 𝐷 ↔ (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷)))
2013, 19mpbid 231 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷))
21 simp3l 1199 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 < 𝐶)
2221adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 < 𝐶)
234adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ*)
24 simp2l 1197 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ∈ ℝ*)
2524adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ*)
26 simprr 772 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
27 xltadd1 13261 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐷 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷)))
2823, 25, 26, 27syl3anc 1369 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 < 𝐶 ↔ (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷)))
2922, 28mpbid 231 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷))
303, 8, 11, 20, 29xrlttrd 13164 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
3130anassrs 467 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 ∈ ℝ) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
32 pnfxr 11292 . . . . . . . . . . . 12 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → +∞ ∈ ℝ*)
34 pnfge 13136 . . . . . . . . . . . 12 (𝐶 ∈ ℝ*𝐶 ≤ +∞)
3524, 34syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ≤ +∞)
364, 24, 33, 21, 35xrltletrd 13166 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 < +∞)
37 nltpnft 13169 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
3837necon2abid 2979 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
394, 38syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
4036, 39mpbid 231 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 ≠ +∞)
41 pnfge 13136 . . . . . . . . . . . 12 (𝐷 ∈ ℝ*𝐷 ≤ +∞)
425, 41syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ≤ +∞)
4314, 5, 33, 12, 42xrltletrd 13166 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 < +∞)
44 nltpnft 13169 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
4544necon2abid 2979 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 < +∞ ↔ 𝐵 ≠ +∞))
4614, 45syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐵 < +∞ ↔ 𝐵 ≠ +∞))
4743, 46mpbid 231 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 ≠ +∞)
48 xaddnepnf 13242 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)
494, 40, 14, 47, 48syl22anc 838 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) ≠ +∞)
50 nltpnft 13169 . . . . . . . . . 10 ((𝐴 +𝑒 𝐵) ∈ ℝ* → ((𝐴 +𝑒 𝐵) = +∞ ↔ ¬ (𝐴 +𝑒 𝐵) < +∞))
5150necon2abid 2979 . . . . . . . . 9 ((𝐴 +𝑒 𝐵) ∈ ℝ* → ((𝐴 +𝑒 𝐵) < +∞ ↔ (𝐴 +𝑒 𝐵) ≠ +∞))
522, 51syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → ((𝐴 +𝑒 𝐵) < +∞ ↔ (𝐴 +𝑒 𝐵) ≠ +∞))
5349, 52mpbird 257 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) < +∞)
5453adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < +∞)
55 oveq2 7422 . . . . . . 7 (𝐷 = +∞ → (𝐶 +𝑒 𝐷) = (𝐶 +𝑒 +∞))
56 mnfxr 11295 . . . . . . . . . . 11 -∞ ∈ ℝ*
5756a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ∈ ℝ*)
58 mnfle 13140 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
594, 58syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ≤ 𝐴)
6057, 4, 24, 59, 21xrlelttrd 13165 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < 𝐶)
61 ngtmnft 13171 . . . . . . . . . . 11 (𝐶 ∈ ℝ* → (𝐶 = -∞ ↔ ¬ -∞ < 𝐶))
6261necon2abid 2979 . . . . . . . . . 10 (𝐶 ∈ ℝ* → (-∞ < 𝐶𝐶 ≠ -∞))
6324, 62syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < 𝐶𝐶 ≠ -∞))
6460, 63mpbid 231 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ≠ -∞)
65 xaddpnf1 13231 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (𝐶 +𝑒 +∞) = +∞)
6624, 64, 65syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 +∞) = +∞)
6755, 66sylan9eqr 2790 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐶 +𝑒 𝐷) = +∞)
6854, 67breqtrrd 5170 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
6968adantlr 714 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
70 mnfle 13140 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
7114, 70syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ≤ 𝐵)
7257, 14, 5, 71, 12xrlelttrd 13165 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < 𝐷)
73 ngtmnft 13171 . . . . . . . . . . 11 (𝐷 ∈ ℝ* → (𝐷 = -∞ ↔ ¬ -∞ < 𝐷))
7473necon2abid 2979 . . . . . . . . . 10 (𝐷 ∈ ℝ* → (-∞ < 𝐷𝐷 ≠ -∞))
755, 74syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < 𝐷𝐷 ≠ -∞))
7672, 75mpbid 231 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ≠ -∞)
7776a1d 25 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (¬ (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷) → 𝐷 ≠ -∞))
7877necon4bd 2956 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐷 = -∞ → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
7978imp 406 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
8079adantlr 714 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
81 elxr 13122 . . . . . 6 (𝐷 ∈ ℝ* ↔ (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
825, 81sylib 217 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
8382adantr 480 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) → (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
8431, 69, 80, 83mpjao3dan 1429 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
8540a1d 25 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (¬ (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷) → 𝐴 ≠ +∞))
8685necon4bd 2956 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 = +∞ → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
8786imp 406 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
88 oveq1 7421 . . . . 5 (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
89 xaddmnf2 13234 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
9014, 47, 89syl2anc 583 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ +𝑒 𝐵) = -∞)
9188, 90sylan9eqr 2790 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
92 xaddnemnf 13241 . . . . . . 7 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞)
9324, 64, 5, 76, 92syl22anc 838 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 𝐷) ≠ -∞)
94 ngtmnft 13171 . . . . . . . 8 ((𝐶 +𝑒 𝐷) ∈ ℝ* → ((𝐶 +𝑒 𝐷) = -∞ ↔ ¬ -∞ < (𝐶 +𝑒 𝐷)))
9594necon2abid 2979 . . . . . . 7 ((𝐶 +𝑒 𝐷) ∈ ℝ* → (-∞ < (𝐶 +𝑒 𝐷) ↔ (𝐶 +𝑒 𝐷) ≠ -∞))
9610, 95syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < (𝐶 +𝑒 𝐷) ↔ (𝐶 +𝑒 𝐷) ≠ -∞))
9793, 96mpbird 257 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < (𝐶 +𝑒 𝐷))
9897adantr 480 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → -∞ < (𝐶 +𝑒 𝐷))
9991, 98eqbrtrd 5164 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
100 elxr 13122 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1014, 100sylib 217 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
10284, 87, 99, 101mpjao3dan 1429 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
1031023expia 1119 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3o 1084  w3a 1085   = wceq 1534  wcel 2099  wne 2936   class class class wbr 5142  (class class class)co 7414  cr 11131  +∞cpnf 11269  -∞cmnf 11270  *cxr 11271   < clt 11272  cle 11273   +𝑒 cxad 13116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-xneg 13118  df-xadd 13119
This theorem is referenced by:  bldisj  24297  iscau3  25199  xrofsup  32531  xrge0addgt0  32741
  Copyright terms: Public domain W3C validator