MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlt2add Structured version   Visualization version   GIF version

Theorem xlt2add 12656
Description: Extended real version of lt2add 11127. Note that ltleadd 11125, which has weaker assumptions, is not true for the extended reals (since 0 + +∞ < 1 + +∞ fails). (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xlt2add (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))

Proof of Theorem xlt2add
StepHypRef Expression
1 xaddcl 12635 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
213ad2ant1 1129 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
32adantr 483 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
4 simp1l 1193 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 ∈ ℝ*)
5 simp2r 1196 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ∈ ℝ*)
6 xaddcl 12635 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
74, 5, 6syl2anc 586 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
87adantr 483 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐷) ∈ ℝ*)
9 xaddcl 12635 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
1093ad2ant2 1130 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
1110adantr 483 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 +𝑒 𝐷) ∈ ℝ*)
12 simp3r 1198 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 < 𝐷)
1312adantr 483 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 < 𝐷)
14 simp1r 1194 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 ∈ ℝ*)
1514adantr 483 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ*)
165adantr 483 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ*)
17 simprl 769 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
18 xltadd2 12653 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*𝐴 ∈ ℝ) → (𝐵 < 𝐷 ↔ (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷)))
1915, 16, 17, 18syl3anc 1367 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 < 𝐷 ↔ (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷)))
2013, 19mpbid 234 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) < (𝐴 +𝑒 𝐷))
21 simp3l 1197 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 < 𝐶)
2221adantr 483 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 < 𝐶)
234adantr 483 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ*)
24 simp2l 1195 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ∈ ℝ*)
2524adantr 483 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ*)
26 simprr 771 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
27 xltadd1 12652 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐷 ∈ ℝ) → (𝐴 < 𝐶 ↔ (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷)))
2823, 25, 26, 27syl3anc 1367 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 < 𝐶 ↔ (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷)))
2922, 28mpbid 234 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐷) < (𝐶 +𝑒 𝐷))
303, 8, 11, 20, 29xrlttrd 12555 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ (𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
3130anassrs 470 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 ∈ ℝ) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
32 pnfxr 10697 . . . . . . . . . . . 12 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → +∞ ∈ ℝ*)
34 pnfge 12528 . . . . . . . . . . . 12 (𝐶 ∈ ℝ*𝐶 ≤ +∞)
3524, 34syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ≤ +∞)
364, 24, 33, 21, 35xrltletrd 12557 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 < +∞)
37 nltpnft 12560 . . . . . . . . . . . 12 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
3837necon2abid 3060 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
394, 38syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
4036, 39mpbid 234 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐴 ≠ +∞)
41 pnfge 12528 . . . . . . . . . . . 12 (𝐷 ∈ ℝ*𝐷 ≤ +∞)
425, 41syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ≤ +∞)
4314, 5, 33, 12, 42xrltletrd 12557 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 < +∞)
44 nltpnft 12560 . . . . . . . . . . . 12 (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
4544necon2abid 3060 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 < +∞ ↔ 𝐵 ≠ +∞))
4614, 45syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐵 < +∞ ↔ 𝐵 ≠ +∞))
4743, 46mpbid 234 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐵 ≠ +∞)
48 xaddnepnf 12633 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐴 ≠ +∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ +∞)) → (𝐴 +𝑒 𝐵) ≠ +∞)
494, 40, 14, 47, 48syl22anc 836 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) ≠ +∞)
50 nltpnft 12560 . . . . . . . . . 10 ((𝐴 +𝑒 𝐵) ∈ ℝ* → ((𝐴 +𝑒 𝐵) = +∞ ↔ ¬ (𝐴 +𝑒 𝐵) < +∞))
5150necon2abid 3060 . . . . . . . . 9 ((𝐴 +𝑒 𝐵) ∈ ℝ* → ((𝐴 +𝑒 𝐵) < +∞ ↔ (𝐴 +𝑒 𝐵) ≠ +∞))
522, 51syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → ((𝐴 +𝑒 𝐵) < +∞ ↔ (𝐴 +𝑒 𝐵) ≠ +∞))
5349, 52mpbird 259 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) < +∞)
5453adantr 483 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < +∞)
55 oveq2 7166 . . . . . . 7 (𝐷 = +∞ → (𝐶 +𝑒 𝐷) = (𝐶 +𝑒 +∞))
56 mnfxr 10700 . . . . . . . . . . 11 -∞ ∈ ℝ*
5756a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ∈ ℝ*)
58 mnfle 12532 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
594, 58syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ≤ 𝐴)
6057, 4, 24, 59, 21xrlelttrd 12556 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < 𝐶)
61 ngtmnft 12562 . . . . . . . . . . 11 (𝐶 ∈ ℝ* → (𝐶 = -∞ ↔ ¬ -∞ < 𝐶))
6261necon2abid 3060 . . . . . . . . . 10 (𝐶 ∈ ℝ* → (-∞ < 𝐶𝐶 ≠ -∞))
6324, 62syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < 𝐶𝐶 ≠ -∞))
6460, 63mpbid 234 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐶 ≠ -∞)
65 xaddpnf1 12622 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (𝐶 +𝑒 +∞) = +∞)
6624, 64, 65syl2anc 586 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 +∞) = +∞)
6755, 66sylan9eqr 2880 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐶 +𝑒 𝐷) = +∞)
6854, 67breqtrrd 5096 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
6968adantlr 713 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
70 mnfle 12532 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
7114, 70syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ ≤ 𝐵)
7257, 14, 5, 71, 12xrlelttrd 12556 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < 𝐷)
73 ngtmnft 12562 . . . . . . . . . . 11 (𝐷 ∈ ℝ* → (𝐷 = -∞ ↔ ¬ -∞ < 𝐷))
7473necon2abid 3060 . . . . . . . . . 10 (𝐷 ∈ ℝ* → (-∞ < 𝐷𝐷 ≠ -∞))
755, 74syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < 𝐷𝐷 ≠ -∞))
7672, 75mpbid 234 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → 𝐷 ≠ -∞)
7776a1d 25 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (¬ (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷) → 𝐷 ≠ -∞))
7877necon4bd 3038 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐷 = -∞ → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
7978imp 409 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐷 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
8079adantlr 713 . . . 4 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) ∧ 𝐷 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
81 elxr 12514 . . . . . 6 (𝐷 ∈ ℝ* ↔ (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
825, 81sylib 220 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
8382adantr 483 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) → (𝐷 ∈ ℝ ∨ 𝐷 = +∞ ∨ 𝐷 = -∞))
8431, 69, 80, 83mpjao3dan 1427 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
8540a1d 25 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (¬ (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷) → 𝐴 ≠ +∞))
8685necon4bd 3038 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 = +∞ → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
8786imp 409 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
88 oveq1 7165 . . . . 5 (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
89 xaddmnf2 12625 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
9014, 47, 89syl2anc 586 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ +𝑒 𝐵) = -∞)
9188, 90sylan9eqr 2880 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
92 xaddnemnf 12632 . . . . . . 7 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞)
9324, 64, 5, 76, 92syl22anc 836 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐶 +𝑒 𝐷) ≠ -∞)
94 ngtmnft 12562 . . . . . . . 8 ((𝐶 +𝑒 𝐷) ∈ ℝ* → ((𝐶 +𝑒 𝐷) = -∞ ↔ ¬ -∞ < (𝐶 +𝑒 𝐷)))
9594necon2abid 3060 . . . . . . 7 ((𝐶 +𝑒 𝐷) ∈ ℝ* → (-∞ < (𝐶 +𝑒 𝐷) ↔ (𝐶 +𝑒 𝐷) ≠ -∞))
9610, 95syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (-∞ < (𝐶 +𝑒 𝐷) ↔ (𝐶 +𝑒 𝐷) ≠ -∞))
9793, 96mpbird 259 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → -∞ < (𝐶 +𝑒 𝐷))
9897adantr 483 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → -∞ < (𝐶 +𝑒 𝐷))
9991, 98eqbrtrd 5090 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
100 elxr 12514 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1014, 100sylib 220 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
10284, 87, 99, 101mpjao3dan 1427 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐴 < 𝐶𝐵 < 𝐷)) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷))
1031023expia 1117 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴 < 𝐶𝐵 < 𝐷) → (𝐴 +𝑒 𝐵) < (𝐶 +𝑒 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  (class class class)co 7158  cr 10538  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678   +𝑒 cxad 12508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-xneg 12510  df-xadd 12511
This theorem is referenced by:  bldisj  23010  iscau3  23883  xrofsup  30494  xrge0addgt0  30680
  Copyright terms: Public domain W3C validator