MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem24 Structured version   Visualization version   GIF version

Theorem fin23lem24 10362
Description: Lemma for fin23 10429. In a class of ordinals, each element is fully identified by those of its predecessors which also belong to the class. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
fin23lem24 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐶𝐵) = (𝐷𝐵) ↔ 𝐶 = 𝐷))

Proof of Theorem fin23lem24
StepHypRef Expression
1 simpll 767 . . . . . 6 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → Ord 𝐴)
2 simplr 769 . . . . . . 7 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → 𝐵𝐴)
3 simprl 771 . . . . . . 7 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → 𝐶𝐵)
42, 3sseldd 3984 . . . . . 6 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → 𝐶𝐴)
5 ordelord 6406 . . . . . 6 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
61, 4, 5syl2anc 584 . . . . 5 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → Ord 𝐶)
7 simprr 773 . . . . . . 7 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → 𝐷𝐵)
82, 7sseldd 3984 . . . . . 6 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → 𝐷𝐴)
9 ordelord 6406 . . . . . 6 ((Ord 𝐴𝐷𝐴) → Ord 𝐷)
101, 8, 9syl2anc 584 . . . . 5 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → Ord 𝐷)
11 ordtri3 6420 . . . . . 6 ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶 = 𝐷 ↔ ¬ (𝐶𝐷𝐷𝐶)))
1211necon2abid 2983 . . . . 5 ((Ord 𝐶 ∧ Ord 𝐷) → ((𝐶𝐷𝐷𝐶) ↔ 𝐶𝐷))
136, 10, 12syl2anc 584 . . . 4 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐶𝐷𝐷𝐶) ↔ 𝐶𝐷))
14 simpr 484 . . . . . . . . 9 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐶𝐷) → 𝐶𝐷)
15 simplrl 777 . . . . . . . . 9 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐶𝐷) → 𝐶𝐵)
1614, 15elind 4200 . . . . . . . 8 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐶𝐷) → 𝐶 ∈ (𝐷𝐵))
176adantr 480 . . . . . . . . . 10 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐶𝐷) → Ord 𝐶)
18 ordirr 6402 . . . . . . . . . 10 (Ord 𝐶 → ¬ 𝐶𝐶)
1917, 18syl 17 . . . . . . . . 9 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐶𝐷) → ¬ 𝐶𝐶)
20 elinel1 4201 . . . . . . . . 9 (𝐶 ∈ (𝐶𝐵) → 𝐶𝐶)
2119, 20nsyl 140 . . . . . . . 8 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐶𝐷) → ¬ 𝐶 ∈ (𝐶𝐵))
22 nelne1 3039 . . . . . . . 8 ((𝐶 ∈ (𝐷𝐵) ∧ ¬ 𝐶 ∈ (𝐶𝐵)) → (𝐷𝐵) ≠ (𝐶𝐵))
2316, 21, 22syl2anc 584 . . . . . . 7 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐶𝐷) → (𝐷𝐵) ≠ (𝐶𝐵))
2423necomd 2996 . . . . . 6 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐶𝐷) → (𝐶𝐵) ≠ (𝐷𝐵))
25 simpr 484 . . . . . . . 8 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐷𝐶) → 𝐷𝐶)
26 simplrr 778 . . . . . . . 8 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐷𝐶) → 𝐷𝐵)
2725, 26elind 4200 . . . . . . 7 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐷𝐶) → 𝐷 ∈ (𝐶𝐵))
2810adantr 480 . . . . . . . . 9 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐷𝐶) → Ord 𝐷)
29 ordirr 6402 . . . . . . . . 9 (Ord 𝐷 → ¬ 𝐷𝐷)
3028, 29syl 17 . . . . . . . 8 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐷𝐶) → ¬ 𝐷𝐷)
31 elinel1 4201 . . . . . . . 8 (𝐷 ∈ (𝐷𝐵) → 𝐷𝐷)
3230, 31nsyl 140 . . . . . . 7 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐷𝐶) → ¬ 𝐷 ∈ (𝐷𝐵))
33 nelne1 3039 . . . . . . 7 ((𝐷 ∈ (𝐶𝐵) ∧ ¬ 𝐷 ∈ (𝐷𝐵)) → (𝐶𝐵) ≠ (𝐷𝐵))
3427, 32, 33syl2anc 584 . . . . . 6 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ 𝐷𝐶) → (𝐶𝐵) ≠ (𝐷𝐵))
3524, 34jaodan 960 . . . . 5 ((((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) ∧ (𝐶𝐷𝐷𝐶)) → (𝐶𝐵) ≠ (𝐷𝐵))
3635ex 412 . . . 4 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐶𝐷𝐷𝐶) → (𝐶𝐵) ≠ (𝐷𝐵)))
3713, 36sylbird 260 . . 3 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → (𝐶𝐷 → (𝐶𝐵) ≠ (𝐷𝐵)))
3837necon4d 2964 . 2 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐶𝐵) = (𝐷𝐵) → 𝐶 = 𝐷))
39 ineq1 4213 . 2 (𝐶 = 𝐷 → (𝐶𝐵) = (𝐷𝐵))
4038, 39impbid1 225 1 (((Ord 𝐴𝐵𝐴) ∧ (𝐶𝐵𝐷𝐵)) → ((𝐶𝐵) = (𝐷𝐵) ↔ 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  cin 3950  wss 3951  Ord word 6383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387
This theorem is referenced by:  fin23lem23  10366
  Copyright terms: Public domain W3C validator