![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funeldmb | Structured version Visualization version GIF version |
Description: If ∅ is not part of the range of a function 𝐹, then 𝐴 is in the domain of 𝐹 iff (𝐹‘𝐴) ≠ ∅. (Contributed by Scott Fenton, 7-Dec-2021.) |
Ref | Expression |
---|---|
funeldmb | ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹‘𝐴) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrn 7096 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | |
2 | 1 | ex 412 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ ran 𝐹)) |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ ran 𝐹)) |
4 | eleq1 2827 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹‘𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹)) | |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → ((𝐹‘𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹)) |
6 | 3, 5 | sylibd 239 | . . . . 5 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → ∅ ∈ ran 𝐹)) |
7 | 6 | con3d 152 | . . . 4 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → (¬ ∅ ∈ ran 𝐹 → ¬ 𝐴 ∈ dom 𝐹)) |
8 | 7 | impancom 451 | . . 3 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹‘𝐴) = ∅ → ¬ 𝐴 ∈ dom 𝐹)) |
9 | ndmfv 6942 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
10 | 8, 9 | impbid1 225 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹‘𝐴) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐹)) |
11 | 10 | necon2abid 2981 | 1 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹‘𝐴) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 dom cdm 5689 ran crn 5690 Fun wfun 6557 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: nosepssdm 27746 |
Copyright terms: Public domain | W3C validator |