Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funeldmb Structured version   Visualization version   GIF version

Theorem funeldmb 33737
Description: If is not part of the range of a function 𝐹, then 𝐴 is in the domain of 𝐹 iff (𝐹𝐴) ≠ ∅. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
funeldmb ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ≠ ∅))

Proof of Theorem funeldmb
StepHypRef Expression
1 fvelrn 6954 . . . . . . . 8 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
21ex 413 . . . . . . 7 (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ ran 𝐹))
32adantr 481 . . . . . 6 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ ran 𝐹))
4 eleq1 2826 . . . . . . 7 ((𝐹𝐴) = ∅ → ((𝐹𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹))
54adantl 482 . . . . . 6 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → ((𝐹𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹))
63, 5sylibd 238 . . . . 5 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → ∅ ∈ ran 𝐹))
76con3d 152 . . . 4 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (¬ ∅ ∈ ran 𝐹 → ¬ 𝐴 ∈ dom 𝐹))
87impancom 452 . . 3 ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹𝐴) = ∅ → ¬ 𝐴 ∈ dom 𝐹))
9 ndmfv 6804 . . 3 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
108, 9impbid1 224 . 2 ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹𝐴) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐹))
1110necon2abid 2986 1 ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  c0 4256  dom cdm 5589  ran crn 5590  Fun wfun 6427  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  nosepssdm  33889
  Copyright terms: Public domain W3C validator