MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeldmb Structured version   Visualization version   GIF version

Theorem funeldmb 7395
Description: If is not part of the range of a function 𝐹, then 𝐴 is in the domain of 𝐹 iff (𝐹𝐴) ≠ ∅. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
funeldmb ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ≠ ∅))

Proof of Theorem funeldmb
StepHypRef Expression
1 fvelrn 7110 . . . . . . . 8 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
21ex 412 . . . . . . 7 (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ ran 𝐹))
32adantr 480 . . . . . 6 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ ran 𝐹))
4 eleq1 2832 . . . . . . 7 ((𝐹𝐴) = ∅ → ((𝐹𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹))
54adantl 481 . . . . . 6 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → ((𝐹𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹))
63, 5sylibd 239 . . . . 5 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → ∅ ∈ ran 𝐹))
76con3d 152 . . . 4 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (¬ ∅ ∈ ran 𝐹 → ¬ 𝐴 ∈ dom 𝐹))
87impancom 451 . . 3 ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹𝐴) = ∅ → ¬ 𝐴 ∈ dom 𝐹))
9 ndmfv 6955 . . 3 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
108, 9impbid1 225 . 2 ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹𝐴) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐹))
1110necon2abid 2989 1 ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  c0 4352  dom cdm 5700  ran crn 5701  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  nosepssdm  27749
  Copyright terms: Public domain W3C validator