| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeldmb | Structured version Visualization version GIF version | ||
| Description: If ∅ is not part of the range of a function 𝐹, then 𝐴 is in the domain of 𝐹 iff (𝐹‘𝐴) ≠ ∅. (Contributed by Scott Fenton, 7-Dec-2021.) |
| Ref | Expression |
|---|---|
| funeldmb | ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹‘𝐴) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrn 7066 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | |
| 2 | 1 | ex 412 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ ran 𝐹)) |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ ran 𝐹)) |
| 4 | eleq1 2822 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹‘𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹)) | |
| 5 | 4 | adantl 481 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → ((𝐹‘𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹)) |
| 6 | 3, 5 | sylibd 239 | . . . . 5 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → ∅ ∈ ran 𝐹)) |
| 7 | 6 | con3d 152 | . . . 4 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → (¬ ∅ ∈ ran 𝐹 → ¬ 𝐴 ∈ dom 𝐹)) |
| 8 | 7 | impancom 451 | . . 3 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹‘𝐴) = ∅ → ¬ 𝐴 ∈ dom 𝐹)) |
| 9 | ndmfv 6911 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 10 | 8, 9 | impbid1 225 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹‘𝐴) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐹)) |
| 11 | 10 | necon2abid 2974 | 1 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹‘𝐴) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 dom cdm 5654 ran crn 5655 Fun wfun 6525 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: nosepssdm 27650 |
| Copyright terms: Public domain | W3C validator |