![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funeldmb | Structured version Visualization version GIF version |
Description: If ∅ is not part of the range of a function 𝐹, then 𝐴 is in the domain of 𝐹 iff (𝐹‘𝐴) ≠ ∅. (Contributed by Scott Fenton, 7-Dec-2021.) |
Ref | Expression |
---|---|
funeldmb | ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹‘𝐴) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrn 7078 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | |
2 | 1 | ex 413 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ ran 𝐹)) |
3 | 2 | adantr 481 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ ran 𝐹)) |
4 | eleq1 2821 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹‘𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹)) | |
5 | 4 | adantl 482 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → ((𝐹‘𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹)) |
6 | 3, 5 | sylibd 238 | . . . . 5 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → ∅ ∈ ran 𝐹)) |
7 | 6 | con3d 152 | . . . 4 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → (¬ ∅ ∈ ran 𝐹 → ¬ 𝐴 ∈ dom 𝐹)) |
8 | 7 | impancom 452 | . . 3 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹‘𝐴) = ∅ → ¬ 𝐴 ∈ dom 𝐹)) |
9 | ndmfv 6926 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
10 | 8, 9 | impbid1 224 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹‘𝐴) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐹)) |
11 | 10 | necon2abid 2983 | 1 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹‘𝐴) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∅c0 4322 dom cdm 5676 ran crn 5677 Fun wfun 6537 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: nosepssdm 27186 |
Copyright terms: Public domain | W3C validator |