Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funeldmb | Structured version Visualization version GIF version |
Description: If ∅ is not part of the range of a function 𝐹, then 𝐴 is in the domain of 𝐹 iff (𝐹‘𝐴) ≠ ∅. (Contributed by Scott Fenton, 7-Dec-2021.) |
Ref | Expression |
---|---|
funeldmb | ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹‘𝐴) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrn 6936 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) | |
2 | 1 | ex 412 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ ran 𝐹)) |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) ∈ ran 𝐹)) |
4 | eleq1 2826 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹‘𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹)) | |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → ((𝐹‘𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹)) |
6 | 3, 5 | sylibd 238 | . . . . 5 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → ∅ ∈ ran 𝐹)) |
7 | 6 | con3d 152 | . . . 4 ⊢ ((Fun 𝐹 ∧ (𝐹‘𝐴) = ∅) → (¬ ∅ ∈ ran 𝐹 → ¬ 𝐴 ∈ dom 𝐹)) |
8 | 7 | impancom 451 | . . 3 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹‘𝐴) = ∅ → ¬ 𝐴 ∈ dom 𝐹)) |
9 | ndmfv 6786 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
10 | 8, 9 | impbid1 224 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹‘𝐴) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐹)) |
11 | 10 | necon2abid 2985 | 1 ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹‘𝐴) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 dom cdm 5580 ran crn 5581 Fun wfun 6412 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: nosepssdm 33816 |
Copyright terms: Public domain | W3C validator |