MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeldmb Structured version   Visualization version   GIF version

Theorem funeldmb 7355
Description: If is not part of the range of a function 𝐹, then 𝐴 is in the domain of 𝐹 iff (𝐹𝐴) ≠ ∅. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
funeldmb ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ≠ ∅))

Proof of Theorem funeldmb
StepHypRef Expression
1 fvelrn 7078 . . . . . . . 8 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
21ex 413 . . . . . . 7 (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ ran 𝐹))
32adantr 481 . . . . . 6 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ ran 𝐹))
4 eleq1 2821 . . . . . . 7 ((𝐹𝐴) = ∅ → ((𝐹𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹))
54adantl 482 . . . . . 6 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → ((𝐹𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹))
63, 5sylibd 238 . . . . 5 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → ∅ ∈ ran 𝐹))
76con3d 152 . . . 4 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (¬ ∅ ∈ ran 𝐹 → ¬ 𝐴 ∈ dom 𝐹))
87impancom 452 . . 3 ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹𝐴) = ∅ → ¬ 𝐴 ∈ dom 𝐹))
9 ndmfv 6926 . . 3 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
108, 9impbid1 224 . 2 ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹𝐴) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐹))
1110necon2abid 2983 1 ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  c0 4322  dom cdm 5676  ran crn 5677  Fun wfun 6537  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  nosepssdm  27186
  Copyright terms: Public domain W3C validator