MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funeldmb Structured version   Visualization version   GIF version

Theorem funeldmb 7305
Description: If is not part of the range of a function 𝐹, then 𝐴 is in the domain of 𝐹 iff (𝐹𝐴) ≠ ∅. (Contributed by Scott Fenton, 7-Dec-2021.)
Assertion
Ref Expression
funeldmb ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ≠ ∅))

Proof of Theorem funeldmb
StepHypRef Expression
1 fvelrn 7028 . . . . . . . 8 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
21ex 414 . . . . . . 7 (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ ran 𝐹))
32adantr 482 . . . . . 6 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ ran 𝐹))
4 eleq1 2822 . . . . . . 7 ((𝐹𝐴) = ∅ → ((𝐹𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹))
54adantl 483 . . . . . 6 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → ((𝐹𝐴) ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹))
63, 5sylibd 238 . . . . 5 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (𝐴 ∈ dom 𝐹 → ∅ ∈ ran 𝐹))
76con3d 152 . . . 4 ((Fun 𝐹 ∧ (𝐹𝐴) = ∅) → (¬ ∅ ∈ ran 𝐹 → ¬ 𝐴 ∈ dom 𝐹))
87impancom 453 . . 3 ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹𝐴) = ∅ → ¬ 𝐴 ∈ dom 𝐹))
9 ndmfv 6878 . . 3 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
108, 9impbid1 224 . 2 ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → ((𝐹𝐴) = ∅ ↔ ¬ 𝐴 ∈ dom 𝐹))
1110necon2abid 2983 1 ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹𝐴) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2940  c0 4283  dom cdm 5634  ran crn 5635  Fun wfun 6491  cfv 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-iota 6449  df-fun 6499  df-fn 6500  df-fv 6505
This theorem is referenced by:  nosepssdm  27050
  Copyright terms: Public domain W3C validator