Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sossfld | Structured version Visualization version GIF version |
Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that ∅ Or {𝐵}). (Contributed by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
sossfld | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4726 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
2 | sotrieq 5539 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → (𝑥 = 𝐵 ↔ ¬ (𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥))) | |
3 | 2 | necon2abid 2984 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) ↔ 𝑥 ≠ 𝐵)) |
4 | 3 | anass1rs 653 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) ↔ 𝑥 ≠ 𝐵)) |
5 | breldmg 5827 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝑥𝑅𝐵) → 𝑥 ∈ dom 𝑅) | |
6 | 5 | 3expia 1121 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑥𝑅𝐵 → 𝑥 ∈ dom 𝑅)) |
7 | 6 | ancoms 460 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝐵 → 𝑥 ∈ dom 𝑅)) |
8 | brelrng 5858 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵𝑅𝑥) → 𝑥 ∈ ran 𝑅) | |
9 | 8 | 3expia 1121 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝑥 → 𝑥 ∈ ran 𝑅)) |
10 | 7, 9 | orim12d 963 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → (𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅))) |
11 | elun 4089 | . . . . . . 7 ⊢ (𝑥 ∈ (dom 𝑅 ∪ ran 𝑅) ↔ (𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅)) | |
12 | 10, 11 | syl6ibr 253 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
13 | 12 | adantll 712 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
14 | 4, 13 | sylbird 261 | . . . 4 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≠ 𝐵 → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
15 | 14 | expimpd 455 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
16 | 1, 15 | biimtrid 242 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
17 | 16 | ssrdv 3932 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 845 ∈ wcel 2104 ≠ wne 2941 ∖ cdif 3889 ∪ cun 3890 ⊆ wss 3892 {csn 4565 class class class wbr 5081 Or wor 5509 dom cdm 5596 ran crn 5597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-po 5510 df-so 5511 df-cnv 5604 df-dm 5606 df-rn 5607 |
This theorem is referenced by: sofld 6101 soex 7796 |
Copyright terms: Public domain | W3C validator |