MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sossfld Structured version   Visualization version   GIF version

Theorem sossfld 6159
Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that ∅ Or {𝐵}). (Contributed by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sossfld ((𝑅 Or 𝐴𝐵𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅))

Proof of Theorem sossfld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 4750 . . 3 (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥𝐴𝑥𝐵))
2 sotrieq 5577 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝐵𝐴)) → (𝑥 = 𝐵 ↔ ¬ (𝑥𝑅𝐵𝐵𝑅𝑥)))
32necon2abid 2967 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝐵𝐴)) → ((𝑥𝑅𝐵𝐵𝑅𝑥) ↔ 𝑥𝐵))
43anass1rs 655 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴) ∧ 𝑥𝐴) → ((𝑥𝑅𝐵𝐵𝑅𝑥) ↔ 𝑥𝐵))
5 breldmg 5873 . . . . . . . . . 10 ((𝑥𝐴𝐵𝐴𝑥𝑅𝐵) → 𝑥 ∈ dom 𝑅)
653expia 1121 . . . . . . . . 9 ((𝑥𝐴𝐵𝐴) → (𝑥𝑅𝐵𝑥 ∈ dom 𝑅))
76ancoms 458 . . . . . . . 8 ((𝐵𝐴𝑥𝐴) → (𝑥𝑅𝐵𝑥 ∈ dom 𝑅))
8 brelrng 5905 . . . . . . . . 9 ((𝐵𝐴𝑥𝐴𝐵𝑅𝑥) → 𝑥 ∈ ran 𝑅)
983expia 1121 . . . . . . . 8 ((𝐵𝐴𝑥𝐴) → (𝐵𝑅𝑥𝑥 ∈ ran 𝑅))
107, 9orim12d 966 . . . . . . 7 ((𝐵𝐴𝑥𝐴) → ((𝑥𝑅𝐵𝐵𝑅𝑥) → (𝑥 ∈ dom 𝑅𝑥 ∈ ran 𝑅)))
11 elun 4116 . . . . . . 7 (𝑥 ∈ (dom 𝑅 ∪ ran 𝑅) ↔ (𝑥 ∈ dom 𝑅𝑥 ∈ ran 𝑅))
1210, 11imbitrrdi 252 . . . . . 6 ((𝐵𝐴𝑥𝐴) → ((𝑥𝑅𝐵𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅)))
1312adantll 714 . . . . 5 (((𝑅 Or 𝐴𝐵𝐴) ∧ 𝑥𝐴) → ((𝑥𝑅𝐵𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅)))
144, 13sylbird 260 . . . 4 (((𝑅 Or 𝐴𝐵𝐴) ∧ 𝑥𝐴) → (𝑥𝐵𝑥 ∈ (dom 𝑅 ∪ ran 𝑅)))
1514expimpd 453 . . 3 ((𝑅 Or 𝐴𝐵𝐴) → ((𝑥𝐴𝑥𝐵) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅)))
161, 15biimtrid 242 . 2 ((𝑅 Or 𝐴𝐵𝐴) → (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅)))
1716ssrdv 3952 1 ((𝑅 Or 𝐴𝐵𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wcel 2109  wne 2925  cdif 3911  cun 3912  wss 3914  {csn 4589   class class class wbr 5107   Or wor 5545  dom cdm 5638  ran crn 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-po 5546  df-so 5547  df-cnv 5646  df-dm 5648  df-rn 5649
This theorem is referenced by:  sofld  6160  soex  7897
  Copyright terms: Public domain W3C validator