Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sossfld | Structured version Visualization version GIF version |
Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that ∅ Or {𝐵}). (Contributed by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
sossfld | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4680 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
2 | sotrieq 5475 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → (𝑥 = 𝐵 ↔ ¬ (𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥))) | |
3 | 2 | necon2abid 2993 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) ↔ 𝑥 ≠ 𝐵)) |
4 | 3 | anass1rs 654 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) ↔ 𝑥 ≠ 𝐵)) |
5 | breldmg 5755 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝑥𝑅𝐵) → 𝑥 ∈ dom 𝑅) | |
6 | 5 | 3expia 1118 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑥𝑅𝐵 → 𝑥 ∈ dom 𝑅)) |
7 | 6 | ancoms 462 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝐵 → 𝑥 ∈ dom 𝑅)) |
8 | brelrng 5787 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵𝑅𝑥) → 𝑥 ∈ ran 𝑅) | |
9 | 8 | 3expia 1118 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝑥 → 𝑥 ∈ ran 𝑅)) |
10 | 7, 9 | orim12d 962 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → (𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅))) |
11 | elun 4056 | . . . . . . 7 ⊢ (𝑥 ∈ (dom 𝑅 ∪ ran 𝑅) ↔ (𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅)) | |
12 | 10, 11 | syl6ibr 255 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
13 | 12 | adantll 713 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
14 | 4, 13 | sylbird 263 | . . . 4 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≠ 𝐵 → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
15 | 14 | expimpd 457 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
16 | 1, 15 | syl5bi 245 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
17 | 16 | ssrdv 3900 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 ∈ wcel 2111 ≠ wne 2951 ∖ cdif 3857 ∪ cun 3858 ⊆ wss 3860 {csn 4525 class class class wbr 5036 Or wor 5446 dom cdm 5528 ran crn 5529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-po 5447 df-so 5448 df-cnv 5536 df-dm 5538 df-rn 5539 |
This theorem is referenced by: sofld 6021 soex 7637 |
Copyright terms: Public domain | W3C validator |