![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sossfld | Structured version Visualization version GIF version |
Description: The base set of a strict order is contained in the field of the relation, except possibly for one element (note that ∅ Or {𝐵}). (Contributed by Mario Carneiro, 27-Apr-2015.) |
Ref | Expression |
---|---|
sossfld | ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4811 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ {𝐵}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵)) | |
2 | sotrieq 5638 | . . . . . . 7 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → (𝑥 = 𝐵 ↔ ¬ (𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥))) | |
3 | 2 | necon2abid 2989 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) ↔ 𝑥 ≠ 𝐵)) |
4 | 3 | anass1rs 654 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) ↔ 𝑥 ≠ 𝐵)) |
5 | breldmg 5934 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝑥𝑅𝐵) → 𝑥 ∈ dom 𝑅) | |
6 | 5 | 3expia 1121 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑥𝑅𝐵 → 𝑥 ∈ dom 𝑅)) |
7 | 6 | ancoms 458 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝐵 → 𝑥 ∈ dom 𝑅)) |
8 | brelrng 5966 | . . . . . . . . 9 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵𝑅𝑥) → 𝑥 ∈ ran 𝑅) | |
9 | 8 | 3expia 1121 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐵𝑅𝑥 → 𝑥 ∈ ran 𝑅)) |
10 | 7, 9 | orim12d 965 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → (𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅))) |
11 | elun 4176 | . . . . . . 7 ⊢ (𝑥 ∈ (dom 𝑅 ∪ ran 𝑅) ↔ (𝑥 ∈ dom 𝑅 ∨ 𝑥 ∈ ran 𝑅)) | |
12 | 10, 11 | imbitrrdi 252 | . . . . . 6 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
13 | 12 | adantll 713 | . . . . 5 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥𝑅𝐵 ∨ 𝐵𝑅𝑥) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
14 | 4, 13 | sylbird 260 | . . . 4 ⊢ (((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≠ 𝐵 → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
15 | 14 | expimpd 453 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝐵) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
16 | 1, 15 | biimtrid 242 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑥 ∈ (𝐴 ∖ {𝐵}) → 𝑥 ∈ (dom 𝑅 ∪ ran 𝑅))) |
17 | 16 | ssrdv 4014 | 1 ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 {csn 4648 class class class wbr 5166 Or wor 5606 dom cdm 5700 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-po 5607 df-so 5608 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: sofld 6218 soex 7961 |
Copyright terms: Public domain | W3C validator |