MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem4 Structured version   Visualization version   GIF version

Theorem isf32lem4 9781
Description: Lemma for isfin3-2 9792. Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
Assertion
Ref Expression
isf32lem4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem isf32lem4
StepHypRef Expression
1 simplrr 776 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝐵 ∈ ω)
2 simplrl 775 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
3 simpr 487 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝐴𝐵)
4 simplll 773 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝜑)
5 incom 4181 . . . 4 (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = (((𝐹𝐵) ∖ (𝐹‘suc 𝐵)) ∩ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)))
6 isf32lem.a . . . . 5 (𝜑𝐹:ω⟶𝒫 𝐺)
7 isf32lem.b . . . . 5 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
8 isf32lem.c . . . . 5 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
96, 7, 8isf32lem3 9780 . . . 4 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝐵𝜑)) → (((𝐹𝐵) ∖ (𝐹‘suc 𝐵)) ∩ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴))) = ∅)
105, 9syl5eq 2871 . . 3 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝐵𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
111, 2, 3, 4, 10syl22anc 836 . 2 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
12 simplrl 775 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝐴 ∈ ω)
13 simplrr 776 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝐵 ∈ ω)
14 simpr 487 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝐵𝐴)
15 simplll 773 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝜑)
166, 7, 8isf32lem3 9780 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
1712, 13, 14, 15, 16syl22anc 836 . 2 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
18 simplr 767 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐴𝐵)
19 nnord 7591 . . . . . 6 (𝐴 ∈ ω → Ord 𝐴)
20 nnord 7591 . . . . . 6 (𝐵 ∈ ω → Ord 𝐵)
21 ordtri3 6230 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
2219, 20, 21syl2an 597 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
2322adantl 484 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
2423necon2abid 3061 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴𝐵𝐵𝐴) ↔ 𝐴𝐵))
2518, 24mpbird 259 . 2 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵𝐵𝐴))
2611, 17, 25mpjaodan 955 1 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  wne 3019  wral 3141  cdif 3936  cin 3938  wss 3939  c0 4294  𝒫 cpw 4542   cint 4879  ran crn 5559  Ord word 6193  suc csuc 6196  wf 6354  cfv 6358  ωcom 7583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-tr 5176  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fv 6366  df-om 7584
This theorem is referenced by:  isf32lem7  9784
  Copyright terms: Public domain W3C validator