MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem4 Structured version   Visualization version   GIF version

Theorem isf32lem4 10425
Description: Lemma for isfin3-2 10436. Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
Assertion
Ref Expression
isf32lem4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem isf32lem4
StepHypRef Expression
1 simplrr 777 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝐵 ∈ ω)
2 simplrl 776 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
3 simpr 484 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝐴𝐵)
4 simplll 774 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝜑)
5 incom 4230 . . . 4 (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = (((𝐹𝐵) ∖ (𝐹‘suc 𝐵)) ∩ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)))
6 isf32lem.a . . . . 5 (𝜑𝐹:ω⟶𝒫 𝐺)
7 isf32lem.b . . . . 5 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
8 isf32lem.c . . . . 5 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
96, 7, 8isf32lem3 10424 . . . 4 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝐵𝜑)) → (((𝐹𝐵) ∖ (𝐹‘suc 𝐵)) ∩ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴))) = ∅)
105, 9eqtrid 2792 . . 3 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝐵𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
111, 2, 3, 4, 10syl22anc 838 . 2 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
12 simplrl 776 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝐴 ∈ ω)
13 simplrr 777 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝐵 ∈ ω)
14 simpr 484 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝐵𝐴)
15 simplll 774 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝜑)
166, 7, 8isf32lem3 10424 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
1712, 13, 14, 15, 16syl22anc 838 . 2 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
18 simplr 768 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐴𝐵)
19 nnord 7911 . . . . . 6 (𝐴 ∈ ω → Ord 𝐴)
20 nnord 7911 . . . . . 6 (𝐵 ∈ ω → Ord 𝐵)
21 ordtri3 6431 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
2219, 20, 21syl2an 595 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
2322adantl 481 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
2423necon2abid 2989 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴𝐵𝐵𝐴) ↔ 𝐴𝐵))
2518, 24mpbird 257 . 2 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵𝐵𝐴))
2611, 17, 25mpjaodan 959 1 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622   cint 4970  ran crn 5701  Ord word 6394  suc csuc 6397  wf 6569  cfv 6573  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fv 6581  df-om 7904
This theorem is referenced by:  isf32lem7  10428
  Copyright terms: Public domain W3C validator