MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem4 Structured version   Visualization version   GIF version

Theorem isf32lem4 10112
Description: Lemma for isfin3-2 10123. Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
Assertion
Ref Expression
isf32lem4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem isf32lem4
StepHypRef Expression
1 simplrr 775 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝐵 ∈ ω)
2 simplrl 774 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
3 simpr 485 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝐴𝐵)
4 simplll 772 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝜑)
5 incom 4135 . . . 4 (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = (((𝐹𝐵) ∖ (𝐹‘suc 𝐵)) ∩ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)))
6 isf32lem.a . . . . 5 (𝜑𝐹:ω⟶𝒫 𝐺)
7 isf32lem.b . . . . 5 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
8 isf32lem.c . . . . 5 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
96, 7, 8isf32lem3 10111 . . . 4 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝐵𝜑)) → (((𝐹𝐵) ∖ (𝐹‘suc 𝐵)) ∩ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴))) = ∅)
105, 9eqtrid 2790 . . 3 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝐵𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
111, 2, 3, 4, 10syl22anc 836 . 2 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
12 simplrl 774 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝐴 ∈ ω)
13 simplrr 775 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝐵 ∈ ω)
14 simpr 485 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝐵𝐴)
15 simplll 772 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝜑)
166, 7, 8isf32lem3 10111 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
1712, 13, 14, 15, 16syl22anc 836 . 2 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
18 simplr 766 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐴𝐵)
19 nnord 7720 . . . . . 6 (𝐴 ∈ ω → Ord 𝐴)
20 nnord 7720 . . . . . 6 (𝐵 ∈ ω → Ord 𝐵)
21 ordtri3 6302 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
2219, 20, 21syl2an 596 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
2322adantl 482 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
2423necon2abid 2986 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴𝐵𝐵𝐴) ↔ 𝐴𝐵))
2518, 24mpbird 256 . 2 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵𝐵𝐴))
2611, 17, 25mpjaodan 956 1 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   cint 4879  ran crn 5590  Ord word 6265  suc csuc 6268  wf 6429  cfv 6433  ωcom 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fv 6441  df-om 7713
This theorem is referenced by:  isf32lem7  10115
  Copyright terms: Public domain W3C validator