MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem4 Structured version   Visualization version   GIF version

Theorem isf32lem4 10043
Description: Lemma for isfin3-2 10054. Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
Assertion
Ref Expression
isf32lem4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem isf32lem4
StepHypRef Expression
1 simplrr 774 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝐵 ∈ ω)
2 simplrl 773 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
3 simpr 484 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝐴𝐵)
4 simplll 771 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → 𝜑)
5 incom 4131 . . . 4 (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = (((𝐹𝐵) ∖ (𝐹‘suc 𝐵)) ∩ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)))
6 isf32lem.a . . . . 5 (𝜑𝐹:ω⟶𝒫 𝐺)
7 isf32lem.b . . . . 5 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
8 isf32lem.c . . . . 5 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
96, 7, 8isf32lem3 10042 . . . 4 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝐵𝜑)) → (((𝐹𝐵) ∖ (𝐹‘suc 𝐵)) ∩ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴))) = ∅)
105, 9eqtrid 2790 . . 3 (((𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐴𝐵𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
111, 2, 3, 4, 10syl22anc 835 . 2 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐴𝐵) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
12 simplrl 773 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝐴 ∈ ω)
13 simplrr 774 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝐵 ∈ ω)
14 simpr 484 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝐵𝐴)
15 simplll 771 . . 3 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → 𝜑)
166, 7, 8isf32lem3 10042 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
1712, 13, 14, 15, 16syl22anc 835 . 2 ((((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ 𝐵𝐴) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
18 simplr 765 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐴𝐵)
19 nnord 7695 . . . . . 6 (𝐴 ∈ ω → Ord 𝐴)
20 nnord 7695 . . . . . 6 (𝐵 ∈ ω → Ord 𝐵)
21 ordtri3 6287 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
2219, 20, 21syl2an 595 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
2322adantl 481 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 = 𝐵 ↔ ¬ (𝐴𝐵𝐵𝐴)))
2423necon2abid 2985 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴𝐵𝐵𝐴) ↔ 𝐴𝐵))
2518, 24mpbird 256 . 2 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵𝐵𝐴))
2611, 17, 25mpjaodan 955 1 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  cdif 3880  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530   cint 4876  ran crn 5581  Ord word 6250  suc csuc 6253  wf 6414  cfv 6418  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fv 6426  df-om 7688
This theorem is referenced by:  isf32lem7  10046
  Copyright terms: Public domain W3C validator