Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > icopnfsup | Structured version Visualization version GIF version |
Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
Ref | Expression |
---|---|
icopnfsup | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ*) | |
2 | pnfxr 11029 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → +∞ ∈ ℝ*) |
4 | nltpnft 12898 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | |
5 | 4 | necon2abid 2986 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞)) |
6 | 5 | biimpar 478 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → 𝐴 < +∞) |
7 | lbico1 13133 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 < +∞) → 𝐴 ∈ (𝐴[,)+∞)) | |
8 | 1, 3, 6, 7 | syl3anc 1370 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → 𝐴 ∈ (𝐴[,)+∞)) |
9 | 8 | ne0d 4269 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴[,)+∞) ≠ ∅) |
10 | df-ico 13085 | . . 3 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
11 | idd 24 | . . 3 ⊢ ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 < +∞)) | |
12 | xrltle 12883 | . . 3 ⊢ ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 ≤ +∞)) | |
13 | xrltle 12883 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 ≤ 𝑤)) | |
14 | idd 24 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 → 𝐴 ≤ 𝑤)) | |
15 | 10, 11, 12, 13, 14 | ixxub 13100 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐴[,)+∞) ≠ ∅) → sup((𝐴[,)+∞), ℝ*, < ) = +∞) |
16 | 1, 3, 9, 15 | syl3anc 1370 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 class class class wbr 5074 (class class class)co 7275 supcsup 9199 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 [,)cico 13081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-ico 13085 |
This theorem is referenced by: dvfsumrlimge0 25194 dvfsumrlim2 25196 limsupresico 43241 liminfresico 43312 |
Copyright terms: Public domain | W3C validator |