MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfsup Structured version   Visualization version   GIF version

Theorem icopnfsup 13862
Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
Assertion
Ref Expression
icopnfsup ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞)

Proof of Theorem icopnfsup
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 481 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 ∈ ℝ*)
2 pnfxr 11298 . . 3 +∞ ∈ ℝ*
32a1i 11 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → +∞ ∈ ℝ*)
4 nltpnft 13175 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
54necon2abid 2973 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
65biimpar 476 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 < +∞)
7 lbico1 13410 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 < +∞) → 𝐴 ∈ (𝐴[,)+∞))
81, 3, 6, 7syl3anc 1368 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 ∈ (𝐴[,)+∞))
98ne0d 4331 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴[,)+∞) ≠ ∅)
10 df-ico 13362 . . 3 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
11 idd 24 . . 3 ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 < +∞))
12 xrltle 13160 . . 3 ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 ≤ +∞))
13 xrltle 13160 . . 3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
14 idd 24 . . 3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑤𝐴𝑤))
1510, 11, 12, 13, 14ixxub 13377 . 2 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐴[,)+∞) ≠ ∅) → sup((𝐴[,)+∞), ℝ*, < ) = +∞)
161, 3, 9, 15syl3anc 1368 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2930  c0 4318   class class class wbr 5143  (class class class)co 7416  supcsup 9463  +∞cpnf 11275  *cxr 11277   < clt 11278  cle 11279  [,)cico 13358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-q 12963  df-ico 13362
This theorem is referenced by:  dvfsumrlimge0  25983  dvfsumrlim2  25985  limsupresico  45151  liminfresico  45222
  Copyright terms: Public domain W3C validator