![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icopnfsup | Structured version Visualization version GIF version |
Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.) |
Ref | Expression |
---|---|
icopnfsup | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ*) | |
2 | pnfxr 11298 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → +∞ ∈ ℝ*) |
4 | nltpnft 13175 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) | |
5 | 4 | necon2abid 2973 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞)) |
6 | 5 | biimpar 476 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → 𝐴 < +∞) |
7 | lbico1 13410 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 < +∞) → 𝐴 ∈ (𝐴[,)+∞)) | |
8 | 1, 3, 6, 7 | syl3anc 1368 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → 𝐴 ∈ (𝐴[,)+∞)) |
9 | 8 | ne0d 4331 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → (𝐴[,)+∞) ≠ ∅) |
10 | df-ico 13362 | . . 3 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
11 | idd 24 | . . 3 ⊢ ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 < +∞)) | |
12 | xrltle 13160 | . . 3 ⊢ ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 ≤ +∞)) | |
13 | xrltle 13160 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 ≤ 𝑤)) | |
14 | idd 24 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 → 𝐴 ≤ 𝑤)) | |
15 | 10, 11, 12, 13, 14 | ixxub 13377 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐴[,)+∞) ≠ ∅) → sup((𝐴[,)+∞), ℝ*, < ) = +∞) |
16 | 1, 3, 9, 15 | syl3anc 1368 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ∅c0 4318 class class class wbr 5143 (class class class)co 7416 supcsup 9463 +∞cpnf 11275 ℝ*cxr 11277 < clt 11278 ≤ cle 11279 [,)cico 13358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-q 12963 df-ico 13362 |
This theorem is referenced by: dvfsumrlimge0 25983 dvfsumrlim2 25985 limsupresico 45151 liminfresico 45222 |
Copyright terms: Public domain | W3C validator |