MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfsup Structured version   Visualization version   GIF version

Theorem icopnfsup 12872
Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
Assertion
Ref Expression
icopnfsup ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞)

Proof of Theorem icopnfsup
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 474 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 ∈ ℝ*)
2 pnfxr 10346 . . 3 +∞ ∈ ℝ*
32a1i 11 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → +∞ ∈ ℝ*)
4 nltpnft 12197 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
54necon2abid 2979 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
65biimpar 469 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 < +∞)
7 lbico1 12430 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 < +∞) → 𝐴 ∈ (𝐴[,)+∞))
81, 3, 6, 7syl3anc 1490 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 ∈ (𝐴[,)+∞))
98ne0d 4086 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴[,)+∞) ≠ ∅)
10 df-ico 12383 . . 3 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
11 idd 24 . . 3 ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 < +∞))
12 xrltle 12182 . . 3 ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 ≤ +∞))
13 xrltle 12182 . . 3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
14 idd 24 . . 3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑤𝐴𝑤))
1510, 11, 12, 13, 14ixxub 12398 . 2 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐴[,)+∞) ≠ ∅) → sup((𝐴[,)+∞), ℝ*, < ) = +∞)
161, 3, 9, 15syl3anc 1490 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → sup((𝐴[,)+∞), ℝ*, < ) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wne 2937  c0 4079   class class class wbr 4809  (class class class)co 6842  supcsup 8553  +∞cpnf 10325  *cxr 10327   < clt 10328  cle 10329  [,)cico 12379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-q 11990  df-ico 12383
This theorem is referenced by:  dvfsumrlimge0  24084  dvfsumrlim2  24086  limsupresico  40502  liminfresico  40573
  Copyright terms: Public domain W3C validator