MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrbnd Structured version   Visualization version   GIF version

Theorem supxrbnd 12797
Description: The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrbnd ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)

Proof of Theorem supxrbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressxr 10756 . . . . 5 ℝ ⊆ ℝ*
2 sstr 3883 . . . . 5 ((𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
31, 2mpan2 691 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ*)
4 supxrcl 12784 . . . . . . 7 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
5 pnfxr 10766 . . . . . . . . . 10 +∞ ∈ ℝ*
6 xrltne 12632 . . . . . . . . . 10 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → +∞ ≠ sup(𝐴, ℝ*, < ))
75, 6mp3an2 1450 . . . . . . . . 9 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → +∞ ≠ sup(𝐴, ℝ*, < ))
87necomd 2989 . . . . . . . 8 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ≠ +∞)
98ex 416 . . . . . . 7 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ≠ +∞))
104, 9syl 17 . . . . . 6 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ≠ +∞))
11 supxrunb2 12789 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
12 ssel2 3870 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
1312adantlr 715 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
14 rexr 10758 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1514ad2antlr 727 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ*)
16 xrlenlt 10777 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦𝑥 ↔ ¬ 𝑥 < 𝑦))
1716con2bid 358 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
1813, 15, 17syl2anc 587 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
1918rexbidva 3205 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑦𝑥))
20 rexnal 3150 . . . . . . . . . . 11 (∃𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀𝑦𝐴 𝑦𝑥)
2119, 20bitrdi 290 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ¬ ∀𝑦𝐴 𝑦𝑥))
2221ralbidva 3108 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥))
2311, 22bitr3d 284 . . . . . . . 8 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥))
24 ralnex 3148 . . . . . . . 8 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
2523, 24bitrdi 290 . . . . . . 7 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
2625necon2abid 2976 . . . . . 6 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ sup(𝐴, ℝ*, < ) ≠ +∞))
2710, 26sylibrd 262 . . . . 5 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
2827imp 410 . . . 4 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
293, 28sylan 583 . . 3 ((𝐴 ⊆ ℝ ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
30293adant2 1132 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
31 supxrre 12796 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
32 suprcl 11671 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
3331, 32eqeltrd 2833 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ)
3430, 33syld3an3 1410 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wral 3053  wrex 3054  wss 3841  c0 4209   class class class wbr 5027  supcsup 8970  cr 10607  +∞cpnf 10743  *cxr 10745   < clt 10746  cle 10747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-sup 8972  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944
This theorem is referenced by:  supxrgtmnf  12798  ovolunlem1  24242  uniioombllem1  24326
  Copyright terms: Public domain W3C validator