MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrbnd Structured version   Visualization version   GIF version

Theorem supxrbnd 13309
Description: The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrbnd ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)

Proof of Theorem supxrbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressxr 11260 . . . . 5 ℝ ⊆ ℝ*
2 sstr 3990 . . . . 5 ((𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
31, 2mpan2 689 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ*)
4 supxrcl 13296 . . . . . . 7 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
5 pnfxr 11270 . . . . . . . . . 10 +∞ ∈ ℝ*
6 xrltne 13144 . . . . . . . . . 10 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → +∞ ≠ sup(𝐴, ℝ*, < ))
75, 6mp3an2 1449 . . . . . . . . 9 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → +∞ ≠ sup(𝐴, ℝ*, < ))
87necomd 2996 . . . . . . . 8 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ≠ +∞)
98ex 413 . . . . . . 7 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ≠ +∞))
104, 9syl 17 . . . . . 6 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ≠ +∞))
11 supxrunb2 13301 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
12 ssel2 3977 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
1312adantlr 713 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
14 rexr 11262 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1514ad2antlr 725 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ*)
16 xrlenlt 11281 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦𝑥 ↔ ¬ 𝑥 < 𝑦))
1716con2bid 354 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
1813, 15, 17syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
1918rexbidva 3176 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑦𝑥))
20 rexnal 3100 . . . . . . . . . . 11 (∃𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀𝑦𝐴 𝑦𝑥)
2119, 20bitrdi 286 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ¬ ∀𝑦𝐴 𝑦𝑥))
2221ralbidva 3175 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥))
2311, 22bitr3d 280 . . . . . . . 8 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥))
24 ralnex 3072 . . . . . . . 8 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
2523, 24bitrdi 286 . . . . . . 7 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
2625necon2abid 2983 . . . . . 6 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ sup(𝐴, ℝ*, < ) ≠ +∞))
2710, 26sylibrd 258 . . . . 5 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
2827imp 407 . . . 4 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
293, 28sylan 580 . . 3 ((𝐴 ⊆ ℝ ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
30293adant2 1131 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
31 supxrre 13308 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
32 suprcl 12176 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
3331, 32eqeltrd 2833 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ)
3430, 33syld3an3 1409 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3948  c0 4322   class class class wbr 5148  supcsup 9437  cr 11111  +∞cpnf 11247  *cxr 11249   < clt 11250  cle 11251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449
This theorem is referenced by:  supxrgtmnf  13310  ovolunlem1  25021  uniioombllem1  25105
  Copyright terms: Public domain W3C validator