MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrbnd Structured version   Visualization version   GIF version

Theorem supxrbnd 12991
Description: The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrbnd ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)

Proof of Theorem supxrbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressxr 10950 . . . . 5 ℝ ⊆ ℝ*
2 sstr 3925 . . . . 5 ((𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
31, 2mpan2 687 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ*)
4 supxrcl 12978 . . . . . . 7 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
5 pnfxr 10960 . . . . . . . . . 10 +∞ ∈ ℝ*
6 xrltne 12826 . . . . . . . . . 10 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → +∞ ≠ sup(𝐴, ℝ*, < ))
75, 6mp3an2 1447 . . . . . . . . 9 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → +∞ ≠ sup(𝐴, ℝ*, < ))
87necomd 2998 . . . . . . . 8 ((sup(𝐴, ℝ*, < ) ∈ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ≠ +∞)
98ex 412 . . . . . . 7 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ≠ +∞))
104, 9syl 17 . . . . . 6 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ≠ +∞))
11 supxrunb2 12983 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
12 ssel2 3912 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
1312adantlr 711 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
14 rexr 10952 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
1514ad2antlr 723 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ*)
16 xrlenlt 10971 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦𝑥 ↔ ¬ 𝑥 < 𝑦))
1716con2bid 354 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
1813, 15, 17syl2anc 583 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
1918rexbidva 3224 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑦𝑥))
20 rexnal 3165 . . . . . . . . . . 11 (∃𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀𝑦𝐴 𝑦𝑥)
2119, 20bitrdi 286 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ¬ ∀𝑦𝐴 𝑦𝑥))
2221ralbidva 3119 . . . . . . . . 9 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥))
2311, 22bitr3d 280 . . . . . . . 8 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥))
24 ralnex 3163 . . . . . . . 8 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
2523, 24bitrdi 286 . . . . . . 7 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
2625necon2abid 2985 . . . . . 6 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ sup(𝐴, ℝ*, < ) ≠ +∞))
2710, 26sylibrd 258 . . . . 5 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) < +∞ → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
2827imp 406 . . . 4 ((𝐴 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
293, 28sylan 579 . . 3 ((𝐴 ⊆ ℝ ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
30293adant2 1129 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
31 supxrre 12990 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < ))
32 suprcl 11865 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
3331, 32eqeltrd 2839 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ*, < ) ∈ ℝ)
3430, 33syld3an3 1407 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   class class class wbr 5070  supcsup 9129  cr 10801  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  supxrgtmnf  12992  ovolunlem1  24566  uniioombllem1  24650
  Copyright terms: Public domain W3C validator