| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ge0nemnf | Structured version Visualization version GIF version | ||
| Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| ge0nemnf | ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge0gtmnf 13196 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴) | |
| 2 | ngtmnft 13190 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
| 4 | 3 | necon2abid 2973 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (-∞ < 𝐴 ↔ 𝐴 ≠ -∞)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5123 0cc0 11137 -∞cmnf 11275 ℝ*cxr 11276 < clt 11277 ≤ cle 11278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-addrcl 11198 ax-rnegex 11208 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 |
| This theorem is referenced by: xlesubadd 13287 xadddi2 13321 xrge0neqmnf 13474 xrge0subm 21387 isxmet2d 24282 xmetrtri 24310 imasdsf1olem 24328 xblpnfps 24350 xblpnf 24351 xblss2ps 24356 xblss2 24357 nmoix 24686 nmoleub 24688 blcvx 24755 xrge0gsumle 24791 xrge0tsms 24792 metdstri 24809 metdscnlem 24813 nmoleub2lem 25083 xrge0addass 32960 xrge0tsmsd 33004 |
| Copyright terms: Public domain | W3C validator |