MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ge0nemnf Structured version   Visualization version   GIF version

Theorem ge0nemnf 12889
Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
ge0nemnf ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)

Proof of Theorem ge0nemnf
StepHypRef Expression
1 ge0gtmnf 12888 . 2 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴)
2 ngtmnft 12882 . . . 4 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
32adantr 480 . . 3 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
43necon2abid 2987 . 2 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (-∞ < 𝐴𝐴 ≠ -∞))
51, 4mpbid 231 1 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wne 2944   class class class wbr 5078  0cc0 10855  -∞cmnf 10991  *cxr 10992   < clt 10993  cle 10994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-addrcl 10916  ax-rnegex 10926  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999
This theorem is referenced by:  xlesubadd  12979  xadddi2  13013  xrge0neqmnf  13166  xrge0subm  20620  isxmet2d  23461  xmetrtri  23489  imasdsf1olem  23507  xblpnfps  23529  xblpnf  23530  xblss2ps  23535  xblss2  23536  nmoix  23874  nmoleub  23876  blcvx  23942  xrge0gsumle  23977  xrge0tsms  23978  metdstri  23995  metdscnlem  23999  nmoleub2lem  24258  xrge0addass  31278  xrge0tsmsd  31296
  Copyright terms: Public domain W3C validator