![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ge0nemnf | Structured version Visualization version GIF version |
Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
ge0nemnf | ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge0gtmnf 12252 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴) | |
2 | ngtmnft 12246 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | |
3 | 2 | adantr 473 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
4 | 3 | necon2abid 3013 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (-∞ < 𝐴 ↔ 𝐴 ≠ -∞)) |
5 | 1, 4 | mpbid 224 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 class class class wbr 4843 0cc0 10224 -∞cmnf 10361 ℝ*cxr 10362 < clt 10363 ≤ cle 10364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-addrcl 10285 ax-rnegex 10295 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 |
This theorem is referenced by: xlesubadd 12342 xadddi2 12376 xrge0neqmnf 12526 xrge0subm 20109 isxmet2d 22460 xmetrtri 22488 imasdsf1olem 22506 xblpnfps 22528 xblpnf 22529 xblss2ps 22534 xblss2 22535 nmoix 22861 nmoleub 22863 blcvx 22929 xrge0gsumle 22964 xrge0tsms 22965 metdstri 22982 metdscnlem 22986 nmoleub2lem 23241 xrge0addass 30206 xrge0tsmsd 30301 |
Copyright terms: Public domain | W3C validator |