MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgt0sr Structured version   Visualization version   GIF version

Theorem sqgt0sr 11101
Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
sqgt0sr ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))

Proof of Theorem sqgt0sr
StepHypRef Expression
1 0r 11075 . . . . 5 0RR
2 ltsosr 11089 . . . . . 6 <R Or R
3 sotrieq 5618 . . . . . 6 (( <R Or R ∧ (𝐴R ∧ 0RR)) → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
42, 3mpan 689 . . . . 5 ((𝐴R ∧ 0RR) → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
51, 4mpan2 690 . . . 4 (𝐴R → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
65necon2abid 2984 . . 3 (𝐴R → ((𝐴 <R 0R ∨ 0R <R 𝐴) ↔ 𝐴 ≠ 0R))
7 m1r 11077 . . . . . . . . 9 -1RR
8 mulclsr 11079 . . . . . . . . 9 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
97, 8mpan2 690 . . . . . . . 8 (𝐴R → (𝐴 ·R -1R) ∈ R)
10 ltasr 11095 . . . . . . . 8 ((𝐴 ·R -1R) ∈ R → (𝐴 <R 0R ↔ ((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R)))
119, 10syl 17 . . . . . . 7 (𝐴R → (𝐴 <R 0R ↔ ((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R)))
12 addcomsr 11082 . . . . . . . . 9 ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))
13 pn0sr 11096 . . . . . . . . 9 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
1412, 13eqtrid 2785 . . . . . . . 8 (𝐴R → ((𝐴 ·R -1R) +R 𝐴) = 0R)
15 0idsr 11092 . . . . . . . . 9 ((𝐴 ·R -1R) ∈ R → ((𝐴 ·R -1R) +R 0R) = (𝐴 ·R -1R))
169, 15syl 17 . . . . . . . 8 (𝐴R → ((𝐴 ·R -1R) +R 0R) = (𝐴 ·R -1R))
1714, 16breq12d 5162 . . . . . . 7 (𝐴R → (((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R) ↔ 0R <R (𝐴 ·R -1R)))
1811, 17bitrd 279 . . . . . 6 (𝐴R → (𝐴 <R 0R ↔ 0R <R (𝐴 ·R -1R)))
19 mulgt0sr 11100 . . . . . . 7 ((0R <R (𝐴 ·R -1R) ∧ 0R <R (𝐴 ·R -1R)) → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)))
2019anidms 568 . . . . . 6 (0R <R (𝐴 ·R -1R) → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)))
2118, 20syl6bi 253 . . . . 5 (𝐴R → (𝐴 <R 0R → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R))))
22 mulcomsr 11084 . . . . . . . . . . . 12 (-1R ·R 𝐴) = (𝐴 ·R -1R)
2322oveq1i 7419 . . . . . . . . . . 11 ((-1R ·R 𝐴) ·R -1R) = ((𝐴 ·R -1R) ·R -1R)
24 mulasssr 11085 . . . . . . . . . . 11 ((-1R ·R 𝐴) ·R -1R) = (-1R ·R (𝐴 ·R -1R))
25 mulasssr 11085 . . . . . . . . . . 11 ((𝐴 ·R -1R) ·R -1R) = (𝐴 ·R (-1R ·R -1R))
2623, 24, 253eqtr3i 2769 . . . . . . . . . 10 (-1R ·R (𝐴 ·R -1R)) = (𝐴 ·R (-1R ·R -1R))
27 m1m1sr 11088 . . . . . . . . . . 11 (-1R ·R -1R) = 1R
2827oveq2i 7420 . . . . . . . . . 10 (𝐴 ·R (-1R ·R -1R)) = (𝐴 ·R 1R)
2926, 28eqtri 2761 . . . . . . . . 9 (-1R ·R (𝐴 ·R -1R)) = (𝐴 ·R 1R)
3029oveq2i 7420 . . . . . . . 8 (𝐴 ·R (-1R ·R (𝐴 ·R -1R))) = (𝐴 ·R (𝐴 ·R 1R))
31 mulasssr 11085 . . . . . . . 8 ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = (𝐴 ·R (-1R ·R (𝐴 ·R -1R)))
32 mulasssr 11085 . . . . . . . 8 ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R (𝐴 ·R 1R))
3330, 31, 323eqtr4i 2771 . . . . . . 7 ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = ((𝐴 ·R 𝐴) ·R 1R)
34 mulclsr 11079 . . . . . . . . 9 ((𝐴R𝐴R) → (𝐴 ·R 𝐴) ∈ R)
35 1idsr 11093 . . . . . . . . 9 ((𝐴 ·R 𝐴) ∈ R → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3634, 35syl 17 . . . . . . . 8 ((𝐴R𝐴R) → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3736anidms 568 . . . . . . 7 (𝐴R → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3833, 37eqtrid 2785 . . . . . 6 (𝐴R → ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = (𝐴 ·R 𝐴))
3938breq2d 5161 . . . . 5 (𝐴R → (0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) ↔ 0R <R (𝐴 ·R 𝐴)))
4021, 39sylibd 238 . . . 4 (𝐴R → (𝐴 <R 0R → 0R <R (𝐴 ·R 𝐴)))
41 mulgt0sr 11100 . . . . . 6 ((0R <R 𝐴 ∧ 0R <R 𝐴) → 0R <R (𝐴 ·R 𝐴))
4241anidms 568 . . . . 5 (0R <R 𝐴 → 0R <R (𝐴 ·R 𝐴))
4342a1i 11 . . . 4 (𝐴R → (0R <R 𝐴 → 0R <R (𝐴 ·R 𝐴)))
4440, 43jaod 858 . . 3 (𝐴R → ((𝐴 <R 0R ∨ 0R <R 𝐴) → 0R <R (𝐴 ·R 𝐴)))
456, 44sylbird 260 . 2 (𝐴R → (𝐴 ≠ 0R → 0R <R (𝐴 ·R 𝐴)))
4645imp 408 1 ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941   class class class wbr 5149   Or wor 5588  (class class class)co 7409  Rcnr 10860  0Rc0r 10861  1Rc1r 10862  -1Rcm1r 10863   +R cplr 10864   ·R cmr 10865   <R cltr 10866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-omul 8471  df-er 8703  df-ec 8705  df-qs 8709  df-ni 10867  df-pli 10868  df-mi 10869  df-lti 10870  df-plpq 10903  df-mpq 10904  df-ltpq 10905  df-enq 10906  df-nq 10907  df-erq 10908  df-plq 10909  df-mq 10910  df-1nq 10911  df-rq 10912  df-ltnq 10913  df-np 10976  df-1p 10977  df-plp 10978  df-mp 10979  df-ltp 10980  df-enr 11050  df-nr 11051  df-plr 11052  df-mr 11053  df-ltr 11054  df-0r 11055  df-1r 11056  df-m1r 11057
This theorem is referenced by:  recexsr  11102
  Copyright terms: Public domain W3C validator