MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgt0sr Structured version   Visualization version   GIF version

Theorem sqgt0sr 11003
Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
sqgt0sr ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))

Proof of Theorem sqgt0sr
StepHypRef Expression
1 0r 10977 . . . . 5 0RR
2 ltsosr 10991 . . . . . 6 <R Or R
3 sotrieq 5558 . . . . . 6 (( <R Or R ∧ (𝐴R ∧ 0RR)) → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
42, 3mpan 690 . . . . 5 ((𝐴R ∧ 0RR) → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
51, 4mpan2 691 . . . 4 (𝐴R → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
65necon2abid 2970 . . 3 (𝐴R → ((𝐴 <R 0R ∨ 0R <R 𝐴) ↔ 𝐴 ≠ 0R))
7 m1r 10979 . . . . . . . . 9 -1RR
8 mulclsr 10981 . . . . . . . . 9 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
97, 8mpan2 691 . . . . . . . 8 (𝐴R → (𝐴 ·R -1R) ∈ R)
10 ltasr 10997 . . . . . . . 8 ((𝐴 ·R -1R) ∈ R → (𝐴 <R 0R ↔ ((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R)))
119, 10syl 17 . . . . . . 7 (𝐴R → (𝐴 <R 0R ↔ ((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R)))
12 addcomsr 10984 . . . . . . . . 9 ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))
13 pn0sr 10998 . . . . . . . . 9 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
1412, 13eqtrid 2778 . . . . . . . 8 (𝐴R → ((𝐴 ·R -1R) +R 𝐴) = 0R)
15 0idsr 10994 . . . . . . . . 9 ((𝐴 ·R -1R) ∈ R → ((𝐴 ·R -1R) +R 0R) = (𝐴 ·R -1R))
169, 15syl 17 . . . . . . . 8 (𝐴R → ((𝐴 ·R -1R) +R 0R) = (𝐴 ·R -1R))
1714, 16breq12d 5106 . . . . . . 7 (𝐴R → (((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R) ↔ 0R <R (𝐴 ·R -1R)))
1811, 17bitrd 279 . . . . . 6 (𝐴R → (𝐴 <R 0R ↔ 0R <R (𝐴 ·R -1R)))
19 mulgt0sr 11002 . . . . . . 7 ((0R <R (𝐴 ·R -1R) ∧ 0R <R (𝐴 ·R -1R)) → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)))
2019anidms 566 . . . . . 6 (0R <R (𝐴 ·R -1R) → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)))
2118, 20biimtrdi 253 . . . . 5 (𝐴R → (𝐴 <R 0R → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R))))
22 mulcomsr 10986 . . . . . . . . . . . 12 (-1R ·R 𝐴) = (𝐴 ·R -1R)
2322oveq1i 7362 . . . . . . . . . . 11 ((-1R ·R 𝐴) ·R -1R) = ((𝐴 ·R -1R) ·R -1R)
24 mulasssr 10987 . . . . . . . . . . 11 ((-1R ·R 𝐴) ·R -1R) = (-1R ·R (𝐴 ·R -1R))
25 mulasssr 10987 . . . . . . . . . . 11 ((𝐴 ·R -1R) ·R -1R) = (𝐴 ·R (-1R ·R -1R))
2623, 24, 253eqtr3i 2762 . . . . . . . . . 10 (-1R ·R (𝐴 ·R -1R)) = (𝐴 ·R (-1R ·R -1R))
27 m1m1sr 10990 . . . . . . . . . . 11 (-1R ·R -1R) = 1R
2827oveq2i 7363 . . . . . . . . . 10 (𝐴 ·R (-1R ·R -1R)) = (𝐴 ·R 1R)
2926, 28eqtri 2754 . . . . . . . . 9 (-1R ·R (𝐴 ·R -1R)) = (𝐴 ·R 1R)
3029oveq2i 7363 . . . . . . . 8 (𝐴 ·R (-1R ·R (𝐴 ·R -1R))) = (𝐴 ·R (𝐴 ·R 1R))
31 mulasssr 10987 . . . . . . . 8 ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = (𝐴 ·R (-1R ·R (𝐴 ·R -1R)))
32 mulasssr 10987 . . . . . . . 8 ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R (𝐴 ·R 1R))
3330, 31, 323eqtr4i 2764 . . . . . . 7 ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = ((𝐴 ·R 𝐴) ·R 1R)
34 mulclsr 10981 . . . . . . . . 9 ((𝐴R𝐴R) → (𝐴 ·R 𝐴) ∈ R)
35 1idsr 10995 . . . . . . . . 9 ((𝐴 ·R 𝐴) ∈ R → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3634, 35syl 17 . . . . . . . 8 ((𝐴R𝐴R) → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3736anidms 566 . . . . . . 7 (𝐴R → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3833, 37eqtrid 2778 . . . . . 6 (𝐴R → ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = (𝐴 ·R 𝐴))
3938breq2d 5105 . . . . 5 (𝐴R → (0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) ↔ 0R <R (𝐴 ·R 𝐴)))
4021, 39sylibd 239 . . . 4 (𝐴R → (𝐴 <R 0R → 0R <R (𝐴 ·R 𝐴)))
41 mulgt0sr 11002 . . . . . 6 ((0R <R 𝐴 ∧ 0R <R 𝐴) → 0R <R (𝐴 ·R 𝐴))
4241anidms 566 . . . . 5 (0R <R 𝐴 → 0R <R (𝐴 ·R 𝐴))
4342a1i 11 . . . 4 (𝐴R → (0R <R 𝐴 → 0R <R (𝐴 ·R 𝐴)))
4440, 43jaod 859 . . 3 (𝐴R → ((𝐴 <R 0R ∨ 0R <R 𝐴) → 0R <R (𝐴 ·R 𝐴)))
456, 44sylbird 260 . 2 (𝐴R → (𝐴 ≠ 0R → 0R <R (𝐴 ·R 𝐴)))
4645imp 406 1 ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5093   Or wor 5526  (class class class)co 7352  Rcnr 10762  0Rc0r 10763  1Rc1r 10764  -1Rcm1r 10765   +R cplr 10766   ·R cmr 10767   <R cltr 10768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-omul 8396  df-er 8628  df-ec 8630  df-qs 8634  df-ni 10769  df-pli 10770  df-mi 10771  df-lti 10772  df-plpq 10805  df-mpq 10806  df-ltpq 10807  df-enq 10808  df-nq 10809  df-erq 10810  df-plq 10811  df-mq 10812  df-1nq 10813  df-rq 10814  df-ltnq 10815  df-np 10878  df-1p 10879  df-plp 10880  df-mp 10881  df-ltp 10882  df-enr 10952  df-nr 10953  df-plr 10954  df-mr 10955  df-ltr 10956  df-0r 10957  df-1r 10958  df-m1r 10959
This theorem is referenced by:  recexsr  11004
  Copyright terms: Public domain W3C validator