MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgt0sr Structured version   Visualization version   GIF version

Theorem sqgt0sr 11143
Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
sqgt0sr ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))

Proof of Theorem sqgt0sr
StepHypRef Expression
1 0r 11117 . . . . 5 0RR
2 ltsosr 11131 . . . . . 6 <R Or R
3 sotrieq 5626 . . . . . 6 (( <R Or R ∧ (𝐴R ∧ 0RR)) → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
42, 3mpan 690 . . . . 5 ((𝐴R ∧ 0RR) → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
51, 4mpan2 691 . . . 4 (𝐴R → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
65necon2abid 2980 . . 3 (𝐴R → ((𝐴 <R 0R ∨ 0R <R 𝐴) ↔ 𝐴 ≠ 0R))
7 m1r 11119 . . . . . . . . 9 -1RR
8 mulclsr 11121 . . . . . . . . 9 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
97, 8mpan2 691 . . . . . . . 8 (𝐴R → (𝐴 ·R -1R) ∈ R)
10 ltasr 11137 . . . . . . . 8 ((𝐴 ·R -1R) ∈ R → (𝐴 <R 0R ↔ ((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R)))
119, 10syl 17 . . . . . . 7 (𝐴R → (𝐴 <R 0R ↔ ((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R)))
12 addcomsr 11124 . . . . . . . . 9 ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))
13 pn0sr 11138 . . . . . . . . 9 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
1412, 13eqtrid 2786 . . . . . . . 8 (𝐴R → ((𝐴 ·R -1R) +R 𝐴) = 0R)
15 0idsr 11134 . . . . . . . . 9 ((𝐴 ·R -1R) ∈ R → ((𝐴 ·R -1R) +R 0R) = (𝐴 ·R -1R))
169, 15syl 17 . . . . . . . 8 (𝐴R → ((𝐴 ·R -1R) +R 0R) = (𝐴 ·R -1R))
1714, 16breq12d 5160 . . . . . . 7 (𝐴R → (((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R) ↔ 0R <R (𝐴 ·R -1R)))
1811, 17bitrd 279 . . . . . 6 (𝐴R → (𝐴 <R 0R ↔ 0R <R (𝐴 ·R -1R)))
19 mulgt0sr 11142 . . . . . . 7 ((0R <R (𝐴 ·R -1R) ∧ 0R <R (𝐴 ·R -1R)) → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)))
2019anidms 566 . . . . . 6 (0R <R (𝐴 ·R -1R) → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)))
2118, 20biimtrdi 253 . . . . 5 (𝐴R → (𝐴 <R 0R → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R))))
22 mulcomsr 11126 . . . . . . . . . . . 12 (-1R ·R 𝐴) = (𝐴 ·R -1R)
2322oveq1i 7440 . . . . . . . . . . 11 ((-1R ·R 𝐴) ·R -1R) = ((𝐴 ·R -1R) ·R -1R)
24 mulasssr 11127 . . . . . . . . . . 11 ((-1R ·R 𝐴) ·R -1R) = (-1R ·R (𝐴 ·R -1R))
25 mulasssr 11127 . . . . . . . . . . 11 ((𝐴 ·R -1R) ·R -1R) = (𝐴 ·R (-1R ·R -1R))
2623, 24, 253eqtr3i 2770 . . . . . . . . . 10 (-1R ·R (𝐴 ·R -1R)) = (𝐴 ·R (-1R ·R -1R))
27 m1m1sr 11130 . . . . . . . . . . 11 (-1R ·R -1R) = 1R
2827oveq2i 7441 . . . . . . . . . 10 (𝐴 ·R (-1R ·R -1R)) = (𝐴 ·R 1R)
2926, 28eqtri 2762 . . . . . . . . 9 (-1R ·R (𝐴 ·R -1R)) = (𝐴 ·R 1R)
3029oveq2i 7441 . . . . . . . 8 (𝐴 ·R (-1R ·R (𝐴 ·R -1R))) = (𝐴 ·R (𝐴 ·R 1R))
31 mulasssr 11127 . . . . . . . 8 ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = (𝐴 ·R (-1R ·R (𝐴 ·R -1R)))
32 mulasssr 11127 . . . . . . . 8 ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R (𝐴 ·R 1R))
3330, 31, 323eqtr4i 2772 . . . . . . 7 ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = ((𝐴 ·R 𝐴) ·R 1R)
34 mulclsr 11121 . . . . . . . . 9 ((𝐴R𝐴R) → (𝐴 ·R 𝐴) ∈ R)
35 1idsr 11135 . . . . . . . . 9 ((𝐴 ·R 𝐴) ∈ R → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3634, 35syl 17 . . . . . . . 8 ((𝐴R𝐴R) → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3736anidms 566 . . . . . . 7 (𝐴R → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3833, 37eqtrid 2786 . . . . . 6 (𝐴R → ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = (𝐴 ·R 𝐴))
3938breq2d 5159 . . . . 5 (𝐴R → (0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) ↔ 0R <R (𝐴 ·R 𝐴)))
4021, 39sylibd 239 . . . 4 (𝐴R → (𝐴 <R 0R → 0R <R (𝐴 ·R 𝐴)))
41 mulgt0sr 11142 . . . . . 6 ((0R <R 𝐴 ∧ 0R <R 𝐴) → 0R <R (𝐴 ·R 𝐴))
4241anidms 566 . . . . 5 (0R <R 𝐴 → 0R <R (𝐴 ·R 𝐴))
4342a1i 11 . . . 4 (𝐴R → (0R <R 𝐴 → 0R <R (𝐴 ·R 𝐴)))
4440, 43jaod 859 . . 3 (𝐴R → ((𝐴 <R 0R ∨ 0R <R 𝐴) → 0R <R (𝐴 ·R 𝐴)))
456, 44sylbird 260 . 2 (𝐴R → (𝐴 ≠ 0R → 0R <R (𝐴 ·R 𝐴)))
4645imp 406 1 ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147   Or wor 5595  (class class class)co 7430  Rcnr 10902  0Rc0r 10903  1Rc1r 10904  -1Rcm1r 10905   +R cplr 10906   ·R cmr 10907   <R cltr 10908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509  df-er 8743  df-ec 8745  df-qs 8749  df-ni 10909  df-pli 10910  df-mi 10911  df-lti 10912  df-plpq 10945  df-mpq 10946  df-ltpq 10947  df-enq 10948  df-nq 10949  df-erq 10950  df-plq 10951  df-mq 10952  df-1nq 10953  df-rq 10954  df-ltnq 10955  df-np 11018  df-1p 11019  df-plp 11020  df-mp 11021  df-ltp 11022  df-enr 11092  df-nr 11093  df-plr 11094  df-mr 11095  df-ltr 11096  df-0r 11097  df-1r 11098  df-m1r 11099
This theorem is referenced by:  recexsr  11144
  Copyright terms: Public domain W3C validator