MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgt0sr Structured version   Visualization version   GIF version

Theorem sqgt0sr 11175
Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
sqgt0sr ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))

Proof of Theorem sqgt0sr
StepHypRef Expression
1 0r 11149 . . . . 5 0RR
2 ltsosr 11163 . . . . . 6 <R Or R
3 sotrieq 5638 . . . . . 6 (( <R Or R ∧ (𝐴R ∧ 0RR)) → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
42, 3mpan 689 . . . . 5 ((𝐴R ∧ 0RR) → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
51, 4mpan2 690 . . . 4 (𝐴R → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
65necon2abid 2989 . . 3 (𝐴R → ((𝐴 <R 0R ∨ 0R <R 𝐴) ↔ 𝐴 ≠ 0R))
7 m1r 11151 . . . . . . . . 9 -1RR
8 mulclsr 11153 . . . . . . . . 9 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
97, 8mpan2 690 . . . . . . . 8 (𝐴R → (𝐴 ·R -1R) ∈ R)
10 ltasr 11169 . . . . . . . 8 ((𝐴 ·R -1R) ∈ R → (𝐴 <R 0R ↔ ((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R)))
119, 10syl 17 . . . . . . 7 (𝐴R → (𝐴 <R 0R ↔ ((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R)))
12 addcomsr 11156 . . . . . . . . 9 ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))
13 pn0sr 11170 . . . . . . . . 9 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
1412, 13eqtrid 2792 . . . . . . . 8 (𝐴R → ((𝐴 ·R -1R) +R 𝐴) = 0R)
15 0idsr 11166 . . . . . . . . 9 ((𝐴 ·R -1R) ∈ R → ((𝐴 ·R -1R) +R 0R) = (𝐴 ·R -1R))
169, 15syl 17 . . . . . . . 8 (𝐴R → ((𝐴 ·R -1R) +R 0R) = (𝐴 ·R -1R))
1714, 16breq12d 5179 . . . . . . 7 (𝐴R → (((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R) ↔ 0R <R (𝐴 ·R -1R)))
1811, 17bitrd 279 . . . . . 6 (𝐴R → (𝐴 <R 0R ↔ 0R <R (𝐴 ·R -1R)))
19 mulgt0sr 11174 . . . . . . 7 ((0R <R (𝐴 ·R -1R) ∧ 0R <R (𝐴 ·R -1R)) → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)))
2019anidms 566 . . . . . 6 (0R <R (𝐴 ·R -1R) → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)))
2118, 20biimtrdi 253 . . . . 5 (𝐴R → (𝐴 <R 0R → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R))))
22 mulcomsr 11158 . . . . . . . . . . . 12 (-1R ·R 𝐴) = (𝐴 ·R -1R)
2322oveq1i 7458 . . . . . . . . . . 11 ((-1R ·R 𝐴) ·R -1R) = ((𝐴 ·R -1R) ·R -1R)
24 mulasssr 11159 . . . . . . . . . . 11 ((-1R ·R 𝐴) ·R -1R) = (-1R ·R (𝐴 ·R -1R))
25 mulasssr 11159 . . . . . . . . . . 11 ((𝐴 ·R -1R) ·R -1R) = (𝐴 ·R (-1R ·R -1R))
2623, 24, 253eqtr3i 2776 . . . . . . . . . 10 (-1R ·R (𝐴 ·R -1R)) = (𝐴 ·R (-1R ·R -1R))
27 m1m1sr 11162 . . . . . . . . . . 11 (-1R ·R -1R) = 1R
2827oveq2i 7459 . . . . . . . . . 10 (𝐴 ·R (-1R ·R -1R)) = (𝐴 ·R 1R)
2926, 28eqtri 2768 . . . . . . . . 9 (-1R ·R (𝐴 ·R -1R)) = (𝐴 ·R 1R)
3029oveq2i 7459 . . . . . . . 8 (𝐴 ·R (-1R ·R (𝐴 ·R -1R))) = (𝐴 ·R (𝐴 ·R 1R))
31 mulasssr 11159 . . . . . . . 8 ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = (𝐴 ·R (-1R ·R (𝐴 ·R -1R)))
32 mulasssr 11159 . . . . . . . 8 ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R (𝐴 ·R 1R))
3330, 31, 323eqtr4i 2778 . . . . . . 7 ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = ((𝐴 ·R 𝐴) ·R 1R)
34 mulclsr 11153 . . . . . . . . 9 ((𝐴R𝐴R) → (𝐴 ·R 𝐴) ∈ R)
35 1idsr 11167 . . . . . . . . 9 ((𝐴 ·R 𝐴) ∈ R → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3634, 35syl 17 . . . . . . . 8 ((𝐴R𝐴R) → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3736anidms 566 . . . . . . 7 (𝐴R → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3833, 37eqtrid 2792 . . . . . 6 (𝐴R → ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = (𝐴 ·R 𝐴))
3938breq2d 5178 . . . . 5 (𝐴R → (0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) ↔ 0R <R (𝐴 ·R 𝐴)))
4021, 39sylibd 239 . . . 4 (𝐴R → (𝐴 <R 0R → 0R <R (𝐴 ·R 𝐴)))
41 mulgt0sr 11174 . . . . . 6 ((0R <R 𝐴 ∧ 0R <R 𝐴) → 0R <R (𝐴 ·R 𝐴))
4241anidms 566 . . . . 5 (0R <R 𝐴 → 0R <R (𝐴 ·R 𝐴))
4342a1i 11 . . . 4 (𝐴R → (0R <R 𝐴 → 0R <R (𝐴 ·R 𝐴)))
4440, 43jaod 858 . . 3 (𝐴R → ((𝐴 <R 0R ∨ 0R <R 𝐴) → 0R <R (𝐴 ·R 𝐴)))
456, 44sylbird 260 . 2 (𝐴R → (𝐴 ≠ 0R → 0R <R (𝐴 ·R 𝐴)))
4645imp 406 1 ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166   Or wor 5606  (class class class)co 7448  Rcnr 10934  0Rc0r 10935  1Rc1r 10936  -1Rcm1r 10937   +R cplr 10938   ·R cmr 10939   <R cltr 10940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-1p 11051  df-plp 11052  df-mp 11053  df-ltp 11054  df-enr 11124  df-nr 11125  df-plr 11126  df-mr 11127  df-ltr 11128  df-0r 11129  df-1r 11130  df-m1r 11131
This theorem is referenced by:  recexsr  11176
  Copyright terms: Public domain W3C validator