MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgt0sr Structured version   Visualization version   GIF version

Theorem sqgt0sr 11035
Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
sqgt0sr ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))

Proof of Theorem sqgt0sr
StepHypRef Expression
1 0r 11009 . . . . 5 0RR
2 ltsosr 11023 . . . . . 6 <R Or R
3 sotrieq 5570 . . . . . 6 (( <R Or R ∧ (𝐴R ∧ 0RR)) → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
42, 3mpan 690 . . . . 5 ((𝐴R ∧ 0RR) → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
51, 4mpan2 691 . . . 4 (𝐴R → (𝐴 = 0R ↔ ¬ (𝐴 <R 0R ∨ 0R <R 𝐴)))
65necon2abid 2967 . . 3 (𝐴R → ((𝐴 <R 0R ∨ 0R <R 𝐴) ↔ 𝐴 ≠ 0R))
7 m1r 11011 . . . . . . . . 9 -1RR
8 mulclsr 11013 . . . . . . . . 9 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
97, 8mpan2 691 . . . . . . . 8 (𝐴R → (𝐴 ·R -1R) ∈ R)
10 ltasr 11029 . . . . . . . 8 ((𝐴 ·R -1R) ∈ R → (𝐴 <R 0R ↔ ((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R)))
119, 10syl 17 . . . . . . 7 (𝐴R → (𝐴 <R 0R ↔ ((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R)))
12 addcomsr 11016 . . . . . . . . 9 ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))
13 pn0sr 11030 . . . . . . . . 9 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
1412, 13eqtrid 2776 . . . . . . . 8 (𝐴R → ((𝐴 ·R -1R) +R 𝐴) = 0R)
15 0idsr 11026 . . . . . . . . 9 ((𝐴 ·R -1R) ∈ R → ((𝐴 ·R -1R) +R 0R) = (𝐴 ·R -1R))
169, 15syl 17 . . . . . . . 8 (𝐴R → ((𝐴 ·R -1R) +R 0R) = (𝐴 ·R -1R))
1714, 16breq12d 5115 . . . . . . 7 (𝐴R → (((𝐴 ·R -1R) +R 𝐴) <R ((𝐴 ·R -1R) +R 0R) ↔ 0R <R (𝐴 ·R -1R)))
1811, 17bitrd 279 . . . . . 6 (𝐴R → (𝐴 <R 0R ↔ 0R <R (𝐴 ·R -1R)))
19 mulgt0sr 11034 . . . . . . 7 ((0R <R (𝐴 ·R -1R) ∧ 0R <R (𝐴 ·R -1R)) → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)))
2019anidms 566 . . . . . 6 (0R <R (𝐴 ·R -1R) → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)))
2118, 20biimtrdi 253 . . . . 5 (𝐴R → (𝐴 <R 0R → 0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R))))
22 mulcomsr 11018 . . . . . . . . . . . 12 (-1R ·R 𝐴) = (𝐴 ·R -1R)
2322oveq1i 7379 . . . . . . . . . . 11 ((-1R ·R 𝐴) ·R -1R) = ((𝐴 ·R -1R) ·R -1R)
24 mulasssr 11019 . . . . . . . . . . 11 ((-1R ·R 𝐴) ·R -1R) = (-1R ·R (𝐴 ·R -1R))
25 mulasssr 11019 . . . . . . . . . . 11 ((𝐴 ·R -1R) ·R -1R) = (𝐴 ·R (-1R ·R -1R))
2623, 24, 253eqtr3i 2760 . . . . . . . . . 10 (-1R ·R (𝐴 ·R -1R)) = (𝐴 ·R (-1R ·R -1R))
27 m1m1sr 11022 . . . . . . . . . . 11 (-1R ·R -1R) = 1R
2827oveq2i 7380 . . . . . . . . . 10 (𝐴 ·R (-1R ·R -1R)) = (𝐴 ·R 1R)
2926, 28eqtri 2752 . . . . . . . . 9 (-1R ·R (𝐴 ·R -1R)) = (𝐴 ·R 1R)
3029oveq2i 7380 . . . . . . . 8 (𝐴 ·R (-1R ·R (𝐴 ·R -1R))) = (𝐴 ·R (𝐴 ·R 1R))
31 mulasssr 11019 . . . . . . . 8 ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = (𝐴 ·R (-1R ·R (𝐴 ·R -1R)))
32 mulasssr 11019 . . . . . . . 8 ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R (𝐴 ·R 1R))
3330, 31, 323eqtr4i 2762 . . . . . . 7 ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = ((𝐴 ·R 𝐴) ·R 1R)
34 mulclsr 11013 . . . . . . . . 9 ((𝐴R𝐴R) → (𝐴 ·R 𝐴) ∈ R)
35 1idsr 11027 . . . . . . . . 9 ((𝐴 ·R 𝐴) ∈ R → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3634, 35syl 17 . . . . . . . 8 ((𝐴R𝐴R) → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3736anidms 566 . . . . . . 7 (𝐴R → ((𝐴 ·R 𝐴) ·R 1R) = (𝐴 ·R 𝐴))
3833, 37eqtrid 2776 . . . . . 6 (𝐴R → ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) = (𝐴 ·R 𝐴))
3938breq2d 5114 . . . . 5 (𝐴R → (0R <R ((𝐴 ·R -1R) ·R (𝐴 ·R -1R)) ↔ 0R <R (𝐴 ·R 𝐴)))
4021, 39sylibd 239 . . . 4 (𝐴R → (𝐴 <R 0R → 0R <R (𝐴 ·R 𝐴)))
41 mulgt0sr 11034 . . . . . 6 ((0R <R 𝐴 ∧ 0R <R 𝐴) → 0R <R (𝐴 ·R 𝐴))
4241anidms 566 . . . . 5 (0R <R 𝐴 → 0R <R (𝐴 ·R 𝐴))
4342a1i 11 . . . 4 (𝐴R → (0R <R 𝐴 → 0R <R (𝐴 ·R 𝐴)))
4440, 43jaod 859 . . 3 (𝐴R → ((𝐴 <R 0R ∨ 0R <R 𝐴) → 0R <R (𝐴 ·R 𝐴)))
456, 44sylbird 260 . 2 (𝐴R → (𝐴 ≠ 0R → 0R <R (𝐴 ·R 𝐴)))
4645imp 406 1 ((𝐴R𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102   Or wor 5538  (class class class)co 7369  Rcnr 10794  0Rc0r 10795  1Rc1r 10796  -1Rcm1r 10797   +R cplr 10798   ·R cmr 10799   <R cltr 10800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-ec 8650  df-qs 8654  df-ni 10801  df-pli 10802  df-mi 10803  df-lti 10804  df-plpq 10837  df-mpq 10838  df-ltpq 10839  df-enq 10840  df-nq 10841  df-erq 10842  df-plq 10843  df-mq 10844  df-1nq 10845  df-rq 10846  df-ltnq 10847  df-np 10910  df-1p 10911  df-plp 10912  df-mp 10913  df-ltp 10914  df-enr 10984  df-nr 10985  df-plr 10986  df-mr 10987  df-ltr 10988  df-0r 10989  df-1r 10990  df-m1r 10991
This theorem is referenced by:  recexsr  11036
  Copyright terms: Public domain W3C validator