MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioopnfsup Structured version   Visualization version   GIF version

Theorem ioopnfsup 13835
Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
Assertion
Ref Expression
ioopnfsup ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → sup((𝐴(,)+∞), ℝ*, < ) = +∞)

Proof of Theorem ioopnfsup
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 ∈ ℝ*)
2 pnfxr 11272 . . 3 +∞ ∈ ℝ*
32a1i 11 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → +∞ ∈ ℝ*)
4 nltpnft 13149 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
54necon2abid 2977 . . . 4 (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
65biimpar 477 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 < +∞)
7 ioon0 13356 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐴(,)+∞) ≠ ∅ ↔ 𝐴 < +∞))
83, 7syldan 590 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → ((𝐴(,)+∞) ≠ ∅ ↔ 𝐴 < +∞))
96, 8mpbird 257 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴(,)+∞) ≠ ∅)
10 df-ioo 13334 . . 3 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
11 idd 24 . . 3 ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 < +∞))
12 xrltle 13134 . . 3 ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 ≤ +∞))
13 idd 24 . . 3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴 < 𝑤))
14 xrltle 13134 . . 3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
1510, 11, 12, 13, 14ixxub 13351 . 2 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐴(,)+∞) ≠ ∅) → sup((𝐴(,)+∞), ℝ*, < ) = +∞)
161, 3, 9, 15syl3anc 1368 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → sup((𝐴(,)+∞), ℝ*, < ) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2934  c0 4317   class class class wbr 5141  (class class class)co 7405  supcsup 9437  +∞cpnf 11249  *cxr 11251   < clt 11252  (,)cioo 13330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-ioo 13334
This theorem is referenced by:  rpsup  13837  resup  13838  dvfsumrlim  25921  logno1  26525
  Copyright terms: Public domain W3C validator