MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioopnfsup Structured version   Visualization version   GIF version

Theorem ioopnfsup 13760
Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016.)
Assertion
Ref Expression
ioopnfsup ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → sup((𝐴(,)+∞), ℝ*, < ) = +∞)

Proof of Theorem ioopnfsup
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 ∈ ℝ*)
2 pnfxr 11158 . . 3 +∞ ∈ ℝ*
32a1i 11 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → +∞ ∈ ℝ*)
4 nltpnft 13055 . . . . 5 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
54necon2abid 2968 . . . 4 (𝐴 ∈ ℝ* → (𝐴 < +∞ ↔ 𝐴 ≠ +∞))
65biimpar 477 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → 𝐴 < +∞)
7 ioon0 13263 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐴(,)+∞) ≠ ∅ ↔ 𝐴 < +∞))
83, 7syldan 591 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → ((𝐴(,)+∞) ≠ ∅ ↔ 𝐴 < +∞))
96, 8mpbird 257 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴(,)+∞) ≠ ∅)
10 df-ioo 13241 . . 3 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
11 idd 24 . . 3 ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 < +∞))
12 xrltle 13040 . . 3 ((𝑤 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑤 < +∞ → 𝑤 ≤ +∞))
13 idd 24 . . 3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴 < 𝑤))
14 xrltle 13040 . . 3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑤))
1510, 11, 12, 13, 14ixxub 13258 . 2 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐴(,)+∞) ≠ ∅) → sup((𝐴(,)+∞), ℝ*, < ) = +∞)
161, 3, 9, 15syl3anc 1373 1 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → sup((𝐴(,)+∞), ℝ*, < ) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  c0 4281   class class class wbr 5089  (class class class)co 7341  supcsup 9319  +∞cpnf 11135  *cxr 11137   < clt 11138  (,)cioo 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-ioo 13241
This theorem is referenced by:  rpsup  13762  resup  13763  dvfsumrlim  25958  logno1  26565
  Copyright terms: Public domain W3C validator