![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leltne | Structured version Visualization version GIF version |
Description: 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by NM, 27-Jul-1999.) |
Ref | Expression |
---|---|
leltne | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lttri3 10409 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | |
2 | simpl 475 | . . . . . . 7 ⊢ ((¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴) → ¬ 𝐴 < 𝐵) | |
3 | 1, 2 | syl6bi 245 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵)) |
4 | 3 | adantr 473 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐴 = 𝐵 → ¬ 𝐴 < 𝐵)) |
5 | leloe 10412 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
6 | 5 | biimpa 469 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) |
7 | 6 | ord 891 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (¬ 𝐴 < 𝐵 → 𝐴 = 𝐵)) |
8 | 4, 7 | impbid 204 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐴 = 𝐵 ↔ ¬ 𝐴 < 𝐵)) |
9 | 8 | necon2abid 3011 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐴 ≠ 𝐵)) |
10 | necom 3022 | . . 3 ⊢ (𝐵 ≠ 𝐴 ↔ 𝐴 ≠ 𝐵) | |
11 | 9, 10 | syl6bbr 281 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) |
12 | 11 | 3impa 1137 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 class class class wbr 4841 ℝcr 10221 < clt 10361 ≤ cle 10362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-resscn 10279 ax-pre-lttri 10296 ax-pre-lttrn 10297 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 |
This theorem is referenced by: leltned 10478 nngt1ne1 11341 nn01to3 12022 gcdn0gt0 15571 isprm3 15727 iundisj2 23654 clwlkclwwlklem2a4 27282 norm-i 28503 cnlnadjlem7 29449 iundisj2f 29912 iundisj2fi 30066 fmul01lt1lem1 40548 icccncfext 40832 iblcncfioo 40925 |
Copyright terms: Public domain | W3C validator |