Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmncan1 Structured version   Visualization version   GIF version

Theorem dmncan1 35828
Description: Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
dmncan.1 𝐺 = (1st𝑅)
dmncan.2 𝐻 = (2nd𝑅)
dmncan.3 𝑋 = ran 𝐺
dmncan.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
dmncan1 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) → 𝐵 = 𝐶))

Proof of Theorem dmncan1
StepHypRef Expression
1 dmnrngo 35809 . . . . . 6 (𝑅 ∈ Dmn → 𝑅 ∈ RingOps)
2 dmncan.1 . . . . . . 7 𝐺 = (1st𝑅)
3 dmncan.2 . . . . . . 7 𝐻 = (2nd𝑅)
4 dmncan.3 . . . . . . 7 𝑋 = ran 𝐺
5 eqid 2758 . . . . . . 7 ( /𝑔𝐺) = ( /𝑔𝐺)
62, 3, 4, 5rngosubdi 35697 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)))
71, 6sylan 583 . . . . 5 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)))
87adantr 484 . . . 4 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → (𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)))
98eqeq1d 2760 . . 3 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 ↔ ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)) = 𝑍))
102rngogrpo 35662 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
111, 10syl 17 . . . . . . . . . . 11 (𝑅 ∈ Dmn → 𝐺 ∈ GrpOp)
124, 5grpodivcl 28434 . . . . . . . . . . . 12 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋𝐶𝑋) → (𝐵( /𝑔𝐺)𝐶) ∈ 𝑋)
13123expb 1117 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (𝐵( /𝑔𝐺)𝐶) ∈ 𝑋)
1411, 13sylan 583 . . . . . . . . . 10 ((𝑅 ∈ Dmn ∧ (𝐵𝑋𝐶𝑋)) → (𝐵( /𝑔𝐺)𝐶) ∈ 𝑋)
1514adantlr 714 . . . . . . . . 9 (((𝑅 ∈ Dmn ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵( /𝑔𝐺)𝐶) ∈ 𝑋)
16 dmncan.4 . . . . . . . . . . . 12 𝑍 = (GId‘𝐺)
172, 3, 4, 16dmnnzd 35827 . . . . . . . . . . 11 ((𝑅 ∈ Dmn ∧ (𝐴𝑋 ∧ (𝐵( /𝑔𝐺)𝐶) ∈ 𝑋 ∧ (𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍)) → (𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍))
18173exp2 1351 . . . . . . . . . 10 (𝑅 ∈ Dmn → (𝐴𝑋 → ((𝐵( /𝑔𝐺)𝐶) ∈ 𝑋 → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍)))))
1918imp31 421 . . . . . . . . 9 (((𝑅 ∈ Dmn ∧ 𝐴𝑋) ∧ (𝐵( /𝑔𝐺)𝐶) ∈ 𝑋) → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍)))
2015, 19syldan 594 . . . . . . . 8 (((𝑅 ∈ Dmn ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍)))
2120exp43 440 . . . . . . 7 (𝑅 ∈ Dmn → (𝐴𝑋 → (𝐵𝑋 → (𝐶𝑋 → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍))))))
22213imp2 1346 . . . . . 6 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍)))
23 neor 3042 . . . . . 6 ((𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍) ↔ (𝐴𝑍 → (𝐵( /𝑔𝐺)𝐶) = 𝑍))
2422, 23syl6ib 254 . . . . 5 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐴𝑍 → (𝐵( /𝑔𝐺)𝐶) = 𝑍)))
2524com23 86 . . . 4 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑍 → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐵( /𝑔𝐺)𝐶) = 𝑍)))
2625imp 410 . . 3 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐵( /𝑔𝐺)𝐶) = 𝑍))
279, 26sylbird 263 . 2 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → (((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)) = 𝑍 → (𝐵( /𝑔𝐺)𝐶) = 𝑍))
2811adantr 484 . . . 4 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐺 ∈ GrpOp)
292, 3, 4rngocl 35653 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
30293adant3r3 1181 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
311, 30sylan 583 . . . 4 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
322, 3, 4rngocl 35653 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) ∈ 𝑋)
33323adant3r2 1180 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
341, 33sylan 583 . . . 4 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
354, 16, 5grpoeqdivid 35633 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝐵) ∈ 𝑋 ∧ (𝐴𝐻𝐶) ∈ 𝑋) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) ↔ ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)) = 𝑍))
3628, 31, 34, 35syl3anc 1368 . . 3 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) ↔ ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)) = 𝑍))
3736adantr 484 . 2 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) ↔ ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)) = 𝑍))
384, 16, 5grpoeqdivid 35633 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋𝐶𝑋) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔𝐺)𝐶) = 𝑍))
39383expb 1117 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔𝐺)𝐶) = 𝑍))
4011, 39sylan 583 . . . 4 ((𝑅 ∈ Dmn ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔𝐺)𝐶) = 𝑍))
41403adantr1 1166 . . 3 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔𝐺)𝐶) = 𝑍))
4241adantr 484 . 2 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔𝐺)𝐶) = 𝑍))
4327, 37, 423imtr4d 297 1 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) → 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2951  ran crn 5529  cfv 6340  (class class class)co 7156  1st c1st 7697  2nd c2nd 7698  GrpOpcgr 28384  GIdcgi 28385   /𝑔 cgs 28387  RingOpscrngo 35646  Dmncdmn 35799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-1o 8118  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-grpo 28388  df-gid 28389  df-ginv 28390  df-gdiv 28391  df-ablo 28440  df-ass 35595  df-exid 35597  df-mgmOLD 35601  df-sgrOLD 35613  df-mndo 35619  df-rngo 35647  df-com2 35742  df-crngo 35746  df-idl 35762  df-pridl 35763  df-prrngo 35800  df-dmn 35801  df-igen 35812
This theorem is referenced by:  dmncan2  35829
  Copyright terms: Public domain W3C validator