Proof of Theorem dmncan1
Step | Hyp | Ref
| Expression |
1 | | dmnrngo 35809 |
. . . . . 6
⊢ (𝑅 ∈ Dmn → 𝑅 ∈
RingOps) |
2 | | dmncan.1 |
. . . . . . 7
⊢ 𝐺 = (1st ‘𝑅) |
3 | | dmncan.2 |
. . . . . . 7
⊢ 𝐻 = (2nd ‘𝑅) |
4 | | dmncan.3 |
. . . . . . 7
⊢ 𝑋 = ran 𝐺 |
5 | | eqid 2758 |
. . . . . . 7
⊢ (
/𝑔 ‘𝐺) = ( /𝑔 ‘𝐺) |
6 | 2, 3, 4, 5 | rngosubdi 35697 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = ((𝐴𝐻𝐵)( /𝑔 ‘𝐺)(𝐴𝐻𝐶))) |
7 | 1, 6 | sylan 583 |
. . . . 5
⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = ((𝐴𝐻𝐵)( /𝑔 ‘𝐺)(𝐴𝐻𝐶))) |
8 | 7 | adantr 484 |
. . . 4
⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴 ≠ 𝑍) → (𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = ((𝐴𝐻𝐵)( /𝑔 ‘𝐺)(𝐴𝐻𝐶))) |
9 | 8 | eqeq1d 2760 |
. . 3
⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴 ≠ 𝑍) → ((𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = 𝑍 ↔ ((𝐴𝐻𝐵)( /𝑔 ‘𝐺)(𝐴𝐻𝐶)) = 𝑍)) |
10 | 2 | rngogrpo 35662 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
11 | 1, 10 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Dmn → 𝐺 ∈ GrpOp) |
12 | 4, 5 | grpodivcl 28434 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵( /𝑔 ‘𝐺)𝐶) ∈ 𝑋) |
13 | 12 | 3expb 1117 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵( /𝑔 ‘𝐺)𝐶) ∈ 𝑋) |
14 | 11, 13 | sylan 583 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Dmn ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵( /𝑔 ‘𝐺)𝐶) ∈ 𝑋) |
15 | 14 | adantlr 714 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Dmn ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵( /𝑔 ‘𝐺)𝐶) ∈ 𝑋) |
16 | | dmncan.4 |
. . . . . . . . . . . 12
⊢ 𝑍 = (GId‘𝐺) |
17 | 2, 3, 4, 16 | dmnnzd 35827 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ (𝐵( /𝑔 ‘𝐺)𝐶) ∈ 𝑋 ∧ (𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = 𝑍)) → (𝐴 = 𝑍 ∨ (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍)) |
18 | 17 | 3exp2 1351 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Dmn → (𝐴 ∈ 𝑋 → ((𝐵( /𝑔 ‘𝐺)𝐶) ∈ 𝑋 → ((𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍))))) |
19 | 18 | imp31 421 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Dmn ∧ 𝐴 ∈ 𝑋) ∧ (𝐵( /𝑔 ‘𝐺)𝐶) ∈ 𝑋) → ((𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍))) |
20 | 15, 19 | syldan 594 |
. . . . . . . 8
⊢ (((𝑅 ∈ Dmn ∧ 𝐴 ∈ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍))) |
21 | 20 | exp43 440 |
. . . . . . 7
⊢ (𝑅 ∈ Dmn → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐶 ∈ 𝑋 → ((𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍)))))) |
22 | 21 | 3imp2 1346 |
. . . . . 6
⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍))) |
23 | | neor 3042 |
. . . . . 6
⊢ ((𝐴 = 𝑍 ∨ (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍) ↔ (𝐴 ≠ 𝑍 → (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍)) |
24 | 22, 23 | syl6ib 254 |
. . . . 5
⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = 𝑍 → (𝐴 ≠ 𝑍 → (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍))) |
25 | 24 | com23 86 |
. . . 4
⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴 ≠ 𝑍 → ((𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = 𝑍 → (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍))) |
26 | 25 | imp 410 |
. . 3
⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴 ≠ 𝑍) → ((𝐴𝐻(𝐵( /𝑔 ‘𝐺)𝐶)) = 𝑍 → (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍)) |
27 | 9, 26 | sylbird 263 |
. 2
⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴 ≠ 𝑍) → (((𝐴𝐻𝐵)( /𝑔 ‘𝐺)(𝐴𝐻𝐶)) = 𝑍 → (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍)) |
28 | 11 | adantr 484 |
. . . 4
⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐺 ∈ GrpOp) |
29 | 2, 3, 4 | rngocl 35653 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
30 | 29 | 3adant3r3 1181 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋) |
31 | 1, 30 | sylan 583 |
. . . 4
⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋) |
32 | 2, 3, 4 | rngocl 35653 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐻𝐶) ∈ 𝑋) |
33 | 32 | 3adant3r2 1180 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋) |
34 | 1, 33 | sylan 583 |
. . . 4
⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋) |
35 | 4, 16, 5 | grpoeqdivid 35633 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝐵) ∈ 𝑋 ∧ (𝐴𝐻𝐶) ∈ 𝑋) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) ↔ ((𝐴𝐻𝐵)( /𝑔 ‘𝐺)(𝐴𝐻𝐶)) = 𝑍)) |
36 | 28, 31, 34, 35 | syl3anc 1368 |
. . 3
⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) ↔ ((𝐴𝐻𝐵)( /𝑔 ‘𝐺)(𝐴𝐻𝐶)) = 𝑍)) |
37 | 36 | adantr 484 |
. 2
⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴 ≠ 𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) ↔ ((𝐴𝐻𝐵)( /𝑔 ‘𝐺)(𝐴𝐻𝐶)) = 𝑍)) |
38 | 4, 16, 5 | grpoeqdivid 35633 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍)) |
39 | 38 | 3expb 1117 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍)) |
40 | 11, 39 | sylan 583 |
. . . 4
⊢ ((𝑅 ∈ Dmn ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍)) |
41 | 40 | 3adantr1 1166 |
. . 3
⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍)) |
42 | 41 | adantr 484 |
. 2
⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴 ≠ 𝑍) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔 ‘𝐺)𝐶) = 𝑍)) |
43 | 27, 37, 42 | 3imtr4d 297 |
1
⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴 ≠ 𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) → 𝐵 = 𝐶)) |