Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmncan1 Structured version   Visualization version   GIF version

Theorem dmncan1 35369
Description: Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
dmncan.1 𝐺 = (1st𝑅)
dmncan.2 𝐻 = (2nd𝑅)
dmncan.3 𝑋 = ran 𝐺
dmncan.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
dmncan1 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) → 𝐵 = 𝐶))

Proof of Theorem dmncan1
StepHypRef Expression
1 dmnrngo 35350 . . . . . 6 (𝑅 ∈ Dmn → 𝑅 ∈ RingOps)
2 dmncan.1 . . . . . . 7 𝐺 = (1st𝑅)
3 dmncan.2 . . . . . . 7 𝐻 = (2nd𝑅)
4 dmncan.3 . . . . . . 7 𝑋 = ran 𝐺
5 eqid 2821 . . . . . . 7 ( /𝑔𝐺) = ( /𝑔𝐺)
62, 3, 4, 5rngosubdi 35238 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)))
71, 6sylan 582 . . . . 5 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)))
87adantr 483 . . . 4 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → (𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)))
98eqeq1d 2823 . . 3 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 ↔ ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)) = 𝑍))
102rngogrpo 35203 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
111, 10syl 17 . . . . . . . . . . 11 (𝑅 ∈ Dmn → 𝐺 ∈ GrpOp)
124, 5grpodivcl 28316 . . . . . . . . . . . 12 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋𝐶𝑋) → (𝐵( /𝑔𝐺)𝐶) ∈ 𝑋)
13123expb 1116 . . . . . . . . . . 11 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (𝐵( /𝑔𝐺)𝐶) ∈ 𝑋)
1411, 13sylan 582 . . . . . . . . . 10 ((𝑅 ∈ Dmn ∧ (𝐵𝑋𝐶𝑋)) → (𝐵( /𝑔𝐺)𝐶) ∈ 𝑋)
1514adantlr 713 . . . . . . . . 9 (((𝑅 ∈ Dmn ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵( /𝑔𝐺)𝐶) ∈ 𝑋)
16 dmncan.4 . . . . . . . . . . . 12 𝑍 = (GId‘𝐺)
172, 3, 4, 16dmnnzd 35368 . . . . . . . . . . 11 ((𝑅 ∈ Dmn ∧ (𝐴𝑋 ∧ (𝐵( /𝑔𝐺)𝐶) ∈ 𝑋 ∧ (𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍)) → (𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍))
18173exp2 1350 . . . . . . . . . 10 (𝑅 ∈ Dmn → (𝐴𝑋 → ((𝐵( /𝑔𝐺)𝐶) ∈ 𝑋 → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍)))))
1918imp31 420 . . . . . . . . 9 (((𝑅 ∈ Dmn ∧ 𝐴𝑋) ∧ (𝐵( /𝑔𝐺)𝐶) ∈ 𝑋) → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍)))
2015, 19syldan 593 . . . . . . . 8 (((𝑅 ∈ Dmn ∧ 𝐴𝑋) ∧ (𝐵𝑋𝐶𝑋)) → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍)))
2120exp43 439 . . . . . . 7 (𝑅 ∈ Dmn → (𝐴𝑋 → (𝐵𝑋 → (𝐶𝑋 → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍))))))
22213imp2 1345 . . . . . 6 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍)))
23 neor 3108 . . . . . 6 ((𝐴 = 𝑍 ∨ (𝐵( /𝑔𝐺)𝐶) = 𝑍) ↔ (𝐴𝑍 → (𝐵( /𝑔𝐺)𝐶) = 𝑍))
2422, 23syl6ib 253 . . . . 5 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐴𝑍 → (𝐵( /𝑔𝐺)𝐶) = 𝑍)))
2524com23 86 . . . 4 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑍 → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐵( /𝑔𝐺)𝐶) = 𝑍)))
2625imp 409 . . 3 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → ((𝐴𝐻(𝐵( /𝑔𝐺)𝐶)) = 𝑍 → (𝐵( /𝑔𝐺)𝐶) = 𝑍))
279, 26sylbird 262 . 2 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → (((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)) = 𝑍 → (𝐵( /𝑔𝐺)𝐶) = 𝑍))
2811adantr 483 . . . 4 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐺 ∈ GrpOp)
292, 3, 4rngocl 35194 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
30293adant3r3 1180 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
311, 30sylan 582 . . . 4 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
322, 3, 4rngocl 35194 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) ∈ 𝑋)
33323adant3r2 1179 . . . . 5 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
341, 33sylan 582 . . . 4 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
354, 16, 5grpoeqdivid 35174 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝐻𝐵) ∈ 𝑋 ∧ (𝐴𝐻𝐶) ∈ 𝑋) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) ↔ ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)) = 𝑍))
3628, 31, 34, 35syl3anc 1367 . . 3 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) ↔ ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)) = 𝑍))
3736adantr 483 . 2 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) ↔ ((𝐴𝐻𝐵)( /𝑔𝐺)(𝐴𝐻𝐶)) = 𝑍))
384, 16, 5grpoeqdivid 35174 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋𝐶𝑋) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔𝐺)𝐶) = 𝑍))
39383expb 1116 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔𝐺)𝐶) = 𝑍))
4011, 39sylan 582 . . . 4 ((𝑅 ∈ Dmn ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔𝐺)𝐶) = 𝑍))
41403adantr1 1165 . . 3 ((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔𝐺)𝐶) = 𝑍))
4241adantr 483 . 2 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → (𝐵 = 𝐶 ↔ (𝐵( /𝑔𝐺)𝐶) = 𝑍))
4327, 37, 423imtr4d 296 1 (((𝑅 ∈ Dmn ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) → 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  ran crn 5556  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  GrpOpcgr 28266  GIdcgi 28267   /𝑔 cgs 28269  RingOpscrngo 35187  Dmncdmn 35340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-grpo 28270  df-gid 28271  df-ginv 28272  df-gdiv 28273  df-ablo 28322  df-ass 35136  df-exid 35138  df-mgmOLD 35142  df-sgrOLD 35154  df-mndo 35160  df-rngo 35188  df-com2 35283  df-crngo 35287  df-idl 35303  df-pridl 35304  df-prrngo 35341  df-dmn 35342  df-igen 35353
This theorem is referenced by:  dmncan2  35370
  Copyright terms: Public domain W3C validator