Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrcmp Structured version   Visualization version   GIF version

Theorem cvrcmp 39265
Description: If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012.)
Hypotheses
Ref Expression
cvrcmp.b 𝐵 = (Base‘𝐾)
cvrcmp.l = (le‘𝐾)
cvrcmp.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrcmp ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem cvrcmp
StepHypRef Expression
1 simpl1 1190 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝐾 ∈ Poset)
2 simpl23 1252 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍𝐵)
3 simpl21 1250 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑋𝐵)
4 simpl3l 1227 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍𝐶𝑋)
5 cvrcmp.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cvrcmp.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
75, 6cvrne 39263 . . . . 5 (((𝐾 ∈ Poset ∧ 𝑍𝐵𝑋𝐵) ∧ 𝑍𝐶𝑋) → 𝑍𝑋)
81, 2, 3, 4, 7syl31anc 1372 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍𝑋)
9 cvrcmp.l . . . . . . . 8 = (le‘𝐾)
105, 9, 6cvrle 39260 . . . . . . 7 (((𝐾 ∈ Poset ∧ 𝑍𝐵𝑋𝐵) ∧ 𝑍𝐶𝑋) → 𝑍 𝑋)
111, 2, 3, 4, 10syl31anc 1372 . . . . . 6 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍 𝑋)
12 simpr 484 . . . . . 6 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑋 𝑌)
13 simpl22 1251 . . . . . . 7 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑌𝐵)
14 simpl3r 1228 . . . . . . 7 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍𝐶𝑌)
155, 9, 6cvrnbtwn4 39261 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑍𝐵𝑌𝐵𝑋𝐵) ∧ 𝑍𝐶𝑌) → ((𝑍 𝑋𝑋 𝑌) ↔ (𝑍 = 𝑋𝑋 = 𝑌)))
161, 2, 13, 3, 14, 15syl131anc 1382 . . . . . 6 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → ((𝑍 𝑋𝑋 𝑌) ↔ (𝑍 = 𝑋𝑋 = 𝑌)))
1711, 12, 16mpbi2and 712 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → (𝑍 = 𝑋𝑋 = 𝑌))
18 neor 3032 . . . . 5 ((𝑍 = 𝑋𝑋 = 𝑌) ↔ (𝑍𝑋𝑋 = 𝑌))
1917, 18sylib 218 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → (𝑍𝑋𝑋 = 𝑌))
208, 19mpd 15 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑋 = 𝑌)
2120ex 412 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
22 simp1 1135 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → 𝐾 ∈ Poset)
23 simp21 1205 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → 𝑋𝐵)
245, 9posref 18376 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
2522, 23, 24syl2anc 584 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → 𝑋 𝑋)
26 breq2 5152 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
2725, 26syl5ibcom 245 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑋 = 𝑌𝑋 𝑌))
2821, 27impbid 212 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  Basecbs 17245  lecple 17305  Posetcpo 18365  ccvr 39244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-proset 18352  df-poset 18371  df-plt 18388  df-covers 39248
This theorem is referenced by:  cvrcmp2  39266  atcmp  39293  llncmp  39505  lplncmp  39545  lvolcmp  39600  lhp2lt  39984
  Copyright terms: Public domain W3C validator