Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrcmp Structured version   Visualization version   GIF version

Theorem cvrcmp 39321
Description: If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012.)
Hypotheses
Ref Expression
cvrcmp.b 𝐵 = (Base‘𝐾)
cvrcmp.l = (le‘𝐾)
cvrcmp.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrcmp ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem cvrcmp
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝐾 ∈ Poset)
2 simpl23 1254 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍𝐵)
3 simpl21 1252 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑋𝐵)
4 simpl3l 1229 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍𝐶𝑋)
5 cvrcmp.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cvrcmp.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
75, 6cvrne 39319 . . . . 5 (((𝐾 ∈ Poset ∧ 𝑍𝐵𝑋𝐵) ∧ 𝑍𝐶𝑋) → 𝑍𝑋)
81, 2, 3, 4, 7syl31anc 1375 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍𝑋)
9 cvrcmp.l . . . . . . . 8 = (le‘𝐾)
105, 9, 6cvrle 39316 . . . . . . 7 (((𝐾 ∈ Poset ∧ 𝑍𝐵𝑋𝐵) ∧ 𝑍𝐶𝑋) → 𝑍 𝑋)
111, 2, 3, 4, 10syl31anc 1375 . . . . . 6 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍 𝑋)
12 simpr 484 . . . . . 6 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑋 𝑌)
13 simpl22 1253 . . . . . . 7 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑌𝐵)
14 simpl3r 1230 . . . . . . 7 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍𝐶𝑌)
155, 9, 6cvrnbtwn4 39317 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑍𝐵𝑌𝐵𝑋𝐵) ∧ 𝑍𝐶𝑌) → ((𝑍 𝑋𝑋 𝑌) ↔ (𝑍 = 𝑋𝑋 = 𝑌)))
161, 2, 13, 3, 14, 15syl131anc 1385 . . . . . 6 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → ((𝑍 𝑋𝑋 𝑌) ↔ (𝑍 = 𝑋𝑋 = 𝑌)))
1711, 12, 16mpbi2and 712 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → (𝑍 = 𝑋𝑋 = 𝑌))
18 neor 3020 . . . . 5 ((𝑍 = 𝑋𝑋 = 𝑌) ↔ (𝑍𝑋𝑋 = 𝑌))
1917, 18sylib 218 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → (𝑍𝑋𝑋 = 𝑌))
208, 19mpd 15 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑋 = 𝑌)
2120ex 412 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
22 simp1 1136 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → 𝐾 ∈ Poset)
23 simp21 1207 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → 𝑋𝐵)
245, 9posref 18221 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
2522, 23, 24syl2anc 584 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → 𝑋 𝑋)
26 breq2 5095 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
2725, 26syl5ibcom 245 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑋 = 𝑌𝑋 𝑌))
2821, 27impbid 212 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  Basecbs 17117  lecple 17165  Posetcpo 18210  ccvr 39300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-proset 18197  df-poset 18216  df-plt 18231  df-covers 39304
This theorem is referenced by:  cvrcmp2  39322  atcmp  39349  llncmp  39560  lplncmp  39600  lvolcmp  39655  lhp2lt  40039
  Copyright terms: Public domain W3C validator