| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrshp4 | Structured version Visualization version GIF version | ||
| Description: A kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| lkrshp4.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkrshp4.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lkrshp4.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkrshp4.k | ⊢ 𝐾 = (LKer‘𝑊) |
| lkrshp4.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lkrshp4.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lkrshp4 | ⊢ (𝜑 → ((𝐾‘𝐺) ≠ 𝑉 ↔ (𝐾‘𝐺) ∈ 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkrshp4.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lkrshp4.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 3 | lkrshp4.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 4 | lkrshp4.k | . . . . 5 ⊢ 𝐾 = (LKer‘𝑊) | |
| 5 | lkrshp4.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 6 | lkrshp4.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | lkrshpor 39094 | . . . 4 ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 ∨ (𝐾‘𝐺) = 𝑉)) |
| 8 | 7 | orcomd 871 | . . 3 ⊢ (𝜑 → ((𝐾‘𝐺) = 𝑉 ∨ (𝐾‘𝐺) ∈ 𝐻)) |
| 9 | neor 3017 | . . 3 ⊢ (((𝐾‘𝐺) = 𝑉 ∨ (𝐾‘𝐺) ∈ 𝐻) ↔ ((𝐾‘𝐺) ≠ 𝑉 → (𝐾‘𝐺) ∈ 𝐻)) | |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ (𝜑 → ((𝐾‘𝐺) ≠ 𝑉 → (𝐾‘𝐺) ∈ 𝐻)) |
| 11 | lveclmod 21046 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 12 | 5, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → 𝑊 ∈ LMod) |
| 14 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → (𝐾‘𝐺) ∈ 𝐻) | |
| 15 | 1, 2, 13, 14 | lshpne 38969 | . . 3 ⊢ ((𝜑 ∧ (𝐾‘𝐺) ∈ 𝐻) → (𝐾‘𝐺) ≠ 𝑉) |
| 16 | 15 | ex 412 | . 2 ⊢ (𝜑 → ((𝐾‘𝐺) ∈ 𝐻 → (𝐾‘𝐺) ≠ 𝑉)) |
| 17 | 10, 16 | impbid 212 | 1 ⊢ (𝜑 → ((𝐾‘𝐺) ≠ 𝑉 ↔ (𝐾‘𝐺) ∈ 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6499 Basecbs 17156 LModclmod 20799 LVecclvec 21042 LSHypclsh 38962 LFnlclfn 39044 LKerclk 39072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-0g 17381 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19232 df-lsm 19551 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-oppr 20258 df-dvdsr 20278 df-unit 20279 df-invr 20309 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-lvec 21043 df-lshyp 38964 df-lfl 39045 df-lkr 39073 |
| This theorem is referenced by: lkrpssN 39150 dochkrshp3 41376 lcfl9a 41493 |
| Copyright terms: Public domain | W3C validator |