![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkrshp4 | Structured version Visualization version GIF version |
Description: A kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
Ref | Expression |
---|---|
lkrshp4.v | β’ π = (Baseβπ) |
lkrshp4.h | β’ π» = (LSHypβπ) |
lkrshp4.f | β’ πΉ = (LFnlβπ) |
lkrshp4.k | β’ πΎ = (LKerβπ) |
lkrshp4.w | β’ (π β π β LVec) |
lkrshp4.g | β’ (π β πΊ β πΉ) |
Ref | Expression |
---|---|
lkrshp4 | β’ (π β ((πΎβπΊ) β π β (πΎβπΊ) β π»)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkrshp4.v | . . . . 5 β’ π = (Baseβπ) | |
2 | lkrshp4.h | . . . . 5 β’ π» = (LSHypβπ) | |
3 | lkrshp4.f | . . . . 5 β’ πΉ = (LFnlβπ) | |
4 | lkrshp4.k | . . . . 5 β’ πΎ = (LKerβπ) | |
5 | lkrshp4.w | . . . . 5 β’ (π β π β LVec) | |
6 | lkrshp4.g | . . . . 5 β’ (π β πΊ β πΉ) | |
7 | 1, 2, 3, 4, 5, 6 | lkrshpor 38443 | . . . 4 β’ (π β ((πΎβπΊ) β π» β¨ (πΎβπΊ) = π)) |
8 | 7 | orcomd 868 | . . 3 β’ (π β ((πΎβπΊ) = π β¨ (πΎβπΊ) β π»)) |
9 | neor 3033 | . . 3 β’ (((πΎβπΊ) = π β¨ (πΎβπΊ) β π») β ((πΎβπΊ) β π β (πΎβπΊ) β π»)) | |
10 | 8, 9 | sylib 217 | . 2 β’ (π β ((πΎβπΊ) β π β (πΎβπΊ) β π»)) |
11 | lveclmod 20950 | . . . . . 6 β’ (π β LVec β π β LMod) | |
12 | 5, 11 | syl 17 | . . . . 5 β’ (π β π β LMod) |
13 | 12 | adantr 480 | . . . 4 β’ ((π β§ (πΎβπΊ) β π») β π β LMod) |
14 | simpr 484 | . . . 4 β’ ((π β§ (πΎβπΊ) β π») β (πΎβπΊ) β π») | |
15 | 1, 2, 13, 14 | lshpne 38318 | . . 3 β’ ((π β§ (πΎβπΊ) β π») β (πΎβπΊ) β π) |
16 | 15 | ex 412 | . 2 β’ (π β ((πΎβπΊ) β π» β (πΎβπΊ) β π)) |
17 | 10, 16 | impbid 211 | 1 β’ (π β ((πΎβπΊ) β π β (πΎβπΊ) β π»)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β¨ wo 844 = wceq 1540 β wcel 2105 β wne 2939 βcfv 6543 Basecbs 17151 LModclmod 20702 LVecclvec 20946 LSHypclsh 38311 LFnlclfn 38393 LKerclk 38421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-cntz 19229 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-drng 20585 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lvec 20947 df-lshyp 38313 df-lfl 38394 df-lkr 38422 |
This theorem is referenced by: lkrpssN 38499 dochkrshp3 40725 lcfl9a 40842 |
Copyright terms: Public domain | W3C validator |