![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fiminre | Structured version Visualization version GIF version |
Description: A nonempty finite set of real numbers has a minimum. Analogous to fimaxre 12107. (Contributed by AV, 9-Aug-2020.) (Proof shortened by Steven Nguyen, 3-Jun-2023.) |
Ref | Expression |
---|---|
fiminre | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 11243 | . . . 4 ⊢ < Or ℝ | |
2 | soss 5569 | . . . 4 ⊢ (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴)) | |
3 | 1, 2 | mpi 20 | . . 3 ⊢ (𝐴 ⊆ ℝ → < Or 𝐴) |
4 | fiming 9442 | . . 3 ⊢ (( < Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥 < 𝑦)) | |
5 | 3, 4 | syl3an1 1164 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥 < 𝑦)) |
6 | ssel2 3943 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | |
7 | 6 | adantr 482 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℝ) |
8 | ssel2 3943 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) | |
9 | 8 | adantlr 714 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
10 | 7, 9 | leloed 11306 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
11 | orcom 869 | . . . . . . . 8 ⊢ ((𝑥 = 𝑦 ∨ 𝑥 < 𝑦) ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦)) | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 = 𝑦 ∨ 𝑥 < 𝑦) ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
13 | neor 3033 | . . . . . . . 8 ⊢ ((𝑥 = 𝑦 ∨ 𝑥 < 𝑦) ↔ (𝑥 ≠ 𝑦 → 𝑥 < 𝑦)) | |
14 | 13 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 = 𝑦 ∨ 𝑥 < 𝑦) ↔ (𝑥 ≠ 𝑦 → 𝑥 < 𝑦))) |
15 | 10, 12, 14 | 3bitr2d 307 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥 ≤ 𝑦 ↔ (𝑥 ≠ 𝑦 → 𝑥 < 𝑦))) |
16 | 15 | biimprd 248 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑥 < 𝑦) → 𝑥 ≤ 𝑦)) |
17 | 16 | ralimdva 3161 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥 < 𝑦) → ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
18 | 17 | reximdva 3162 | . . 3 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥 < 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
19 | 18 | 3ad2ant1 1134 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥 < 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
20 | 5, 19 | mpd 15 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ⊆ wss 3914 ∅c0 4286 class class class wbr 5109 Or wor 5548 Fincfn 8889 ℝcr 11058 < clt 11197 ≤ cle 11198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-resscn 11116 ax-pre-lttri 11133 ax-pre-lttrn 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-om 7807 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 |
This theorem is referenced by: fiminre2 12111 prmgaplem4 16934 aks4d1p5 40587 aks4d1p8 40594 hoidmvlelem2 44927 |
Copyright terms: Public domain | W3C validator |