MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiminre Structured version   Visualization version   GIF version

Theorem fiminre 11852
Description: A nonempty finite set of real numbers has a minimum. Analogous to fimaxre 11849. (Contributed by AV, 9-Aug-2020.) (Proof shortened by Steven Nguyen, 3-Jun-2023.)
Assertion
Ref Expression
fiminre ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fiminre
StepHypRef Expression
1 ltso 10986 . . . 4 < Or ℝ
2 soss 5514 . . . 4 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
31, 2mpi 20 . . 3 (𝐴 ⊆ ℝ → < Or 𝐴)
4 fiming 9187 . . 3 (( < Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 < 𝑦))
53, 4syl3an1 1161 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 < 𝑦))
6 ssel2 3912 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
76adantr 480 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ)
8 ssel2 3912 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
98adantlr 711 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
107, 9leloed 11048 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
11 orcom 866 . . . . . . . 8 ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦))
1211a1i 11 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
13 neor 3035 . . . . . . . 8 ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥𝑦𝑥 < 𝑦))
1413a1i 11 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥𝑦𝑥 < 𝑦)))
1510, 12, 143bitr2d 306 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 ↔ (𝑥𝑦𝑥 < 𝑦)))
1615biimprd 247 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑥 < 𝑦) → 𝑥𝑦))
1716ralimdva 3102 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑥 < 𝑦) → ∀𝑦𝐴 𝑥𝑦))
1817reximdva 3202 . . 3 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 < 𝑦) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦))
19183ad2ant1 1131 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 < 𝑦) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦))
205, 19mpd 15 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   class class class wbr 5070   Or wor 5493  Fincfn 8691  cr 10801   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946
This theorem is referenced by:  fiminre2  11853  prmgaplem4  16683  aks4d1p5  40016  aks4d1p8  40023  hoidmvlelem2  44024
  Copyright terms: Public domain W3C validator