| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fiminre | Structured version Visualization version GIF version | ||
| Description: A nonempty finite set of real numbers has a minimum. Analogous to fimaxre 12066. (Contributed by AV, 9-Aug-2020.) (Proof shortened by Steven Nguyen, 3-Jun-2023.) |
| Ref | Expression |
|---|---|
| fiminre | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso 11193 | . . . 4 ⊢ < Or ℝ | |
| 2 | soss 5542 | . . . 4 ⊢ (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴)) | |
| 3 | 1, 2 | mpi 20 | . . 3 ⊢ (𝐴 ⊆ ℝ → < Or 𝐴) |
| 4 | fiming 9384 | . . 3 ⊢ (( < Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥 < 𝑦)) | |
| 5 | 3, 4 | syl3an1 1163 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥 < 𝑦)) |
| 6 | ssel2 3924 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | |
| 7 | 6 | adantr 480 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 8 | ssel2 3924 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) | |
| 9 | 8 | adantlr 715 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 10 | 7, 9 | leloed 11256 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥 ≤ 𝑦 ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
| 11 | orcom 870 | . . . . . . . 8 ⊢ ((𝑥 = 𝑦 ∨ 𝑥 < 𝑦) ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦)) | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 = 𝑦 ∨ 𝑥 < 𝑦) ↔ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦))) |
| 13 | neor 3020 | . . . . . . . 8 ⊢ ((𝑥 = 𝑦 ∨ 𝑥 < 𝑦) ↔ (𝑥 ≠ 𝑦 → 𝑥 < 𝑦)) | |
| 14 | 13 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 = 𝑦 ∨ 𝑥 < 𝑦) ↔ (𝑥 ≠ 𝑦 → 𝑥 < 𝑦))) |
| 15 | 10, 12, 14 | 3bitr2d 307 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥 ≤ 𝑦 ↔ (𝑥 ≠ 𝑦 → 𝑥 < 𝑦))) |
| 16 | 15 | biimprd 248 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑥 < 𝑦) → 𝑥 ≤ 𝑦)) |
| 17 | 16 | ralimdva 3144 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥 < 𝑦) → ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
| 18 | 17 | reximdva 3145 | . . 3 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥 < 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
| 19 | 18 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥 < 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
| 20 | 5, 19 | mpd 15 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 ∅c0 4280 class class class wbr 5089 Or wor 5521 Fincfn 8869 ℝcr 11005 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 |
| This theorem is referenced by: fiminre2 12070 prmgaplem4 16966 aks4d1p5 42172 aks4d1p8 42179 hoidmvlelem2 46693 |
| Copyright terms: Public domain | W3C validator |