MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiminre Structured version   Visualization version   GIF version

Theorem fiminre 12194
Description: A nonempty finite set of real numbers has a minimum. Analogous to fimaxre 12191. (Contributed by AV, 9-Aug-2020.) (Proof shortened by Steven Nguyen, 3-Jun-2023.)
Assertion
Ref Expression
fiminre ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fiminre
StepHypRef Expression
1 ltso 11326 . . . 4 < Or ℝ
2 soss 5610 . . . 4 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
31, 2mpi 20 . . 3 (𝐴 ⊆ ℝ → < Or 𝐴)
4 fiming 9523 . . 3 (( < Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 < 𝑦))
53, 4syl3an1 1160 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 < 𝑦))
6 ssel2 3971 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
76adantr 479 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ)
8 ssel2 3971 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
98adantlr 713 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
107, 9leloed 11389 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
11 orcom 868 . . . . . . . 8 ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦))
1211a1i 11 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
13 neor 3023 . . . . . . . 8 ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥𝑦𝑥 < 𝑦))
1413a1i 11 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥𝑦𝑥 < 𝑦)))
1510, 12, 143bitr2d 306 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 ↔ (𝑥𝑦𝑥 < 𝑦)))
1615biimprd 247 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑥 < 𝑦) → 𝑥𝑦))
1716ralimdva 3156 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑥 < 𝑦) → ∀𝑦𝐴 𝑥𝑦))
1817reximdva 3157 . . 3 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 < 𝑦) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦))
19183ad2ant1 1130 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 < 𝑦) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦))
205, 19mpd 15 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084  wcel 2098  wne 2929  wral 3050  wrex 3059  wss 3944  c0 4322   class class class wbr 5149   Or wor 5589  Fincfn 8964  cr 11139   < clt 11280  cle 11281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11197  ax-pre-lttri 11214  ax-pre-lttrn 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-om 7872  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286
This theorem is referenced by:  fiminre2  12195  prmgaplem4  17026  aks4d1p5  41683  aks4d1p8  41690  hoidmvlelem2  46122
  Copyright terms: Public domain W3C validator