MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiminre Structured version   Visualization version   GIF version

Theorem fiminre 11922
Description: A nonempty finite set of real numbers has a minimum. Analogous to fimaxre 11919. (Contributed by AV, 9-Aug-2020.) (Proof shortened by Steven Nguyen, 3-Jun-2023.)
Assertion
Ref Expression
fiminre ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fiminre
StepHypRef Expression
1 ltso 11056 . . . 4 < Or ℝ
2 soss 5524 . . . 4 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
31, 2mpi 20 . . 3 (𝐴 ⊆ ℝ → < Or 𝐴)
4 fiming 9235 . . 3 (( < Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 < 𝑦))
53, 4syl3an1 1162 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 < 𝑦))
6 ssel2 3921 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
76adantr 481 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ)
8 ssel2 3921 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
98adantlr 712 . . . . . . . 8 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
107, 9leloed 11118 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
11 orcom 867 . . . . . . . 8 ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦))
1211a1i 11 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
13 neor 3038 . . . . . . . 8 ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥𝑦𝑥 < 𝑦))
1413a1i 11 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥𝑦𝑥 < 𝑦)))
1510, 12, 143bitr2d 307 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 ↔ (𝑥𝑦𝑥 < 𝑦)))
1615biimprd 247 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑥 < 𝑦) → 𝑥𝑦))
1716ralimdva 3105 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑥 < 𝑦) → ∀𝑦𝐴 𝑥𝑦))
1817reximdva 3205 . . 3 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 < 𝑦) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦))
19183ad2ant1 1132 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑥 < 𝑦) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦))
205, 19mpd 15 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086  wcel 2110  wne 2945  wral 3066  wrex 3067  wss 3892  c0 4262   class class class wbr 5079   Or wor 5503  Fincfn 8716  cr 10871   < clt 11010  cle 11011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-resscn 10929  ax-pre-lttri 10946  ax-pre-lttrn 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-om 7707  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016
This theorem is referenced by:  fiminre2  11923  prmgaplem4  16753  aks4d1p5  40085  aks4d1p8  40092  hoidmvlelem2  44105
  Copyright terms: Public domain W3C validator