![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prime | Structured version Visualization version GIF version |
Description: Two ways to express "𝐴 is a prime number (or 1)." See also isprm 15720. (Contributed by NM, 4-May-2005.) |
Ref | Expression |
---|---|
prime | ⊢ (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 378 | . . . 4 ⊢ ((𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴))) | |
2 | impexp 442 | . . . 4 ⊢ (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴))) | |
3 | neor 3063 | . . . . 5 ⊢ ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴)) | |
4 | 3 | imbi2i 328 | . . . 4 ⊢ (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴))) |
5 | 1, 2, 4 | 3bitr4ri 296 | . . 3 ⊢ (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)) |
6 | nngt1ne1 11344 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → (1 < 𝑥 ↔ 𝑥 ≠ 1)) | |
7 | 6 | adantl 474 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (1 < 𝑥 ↔ 𝑥 ≠ 1)) |
8 | 7 | anbi1d 624 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
9 | nnz 11688 | . . . . . . . . 9 ⊢ ((𝐴 / 𝑥) ∈ ℕ → (𝐴 / 𝑥) ∈ ℤ) | |
10 | nnre 11321 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
11 | gtndiv 11743 | . . . . . . . . . . . . . 14 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝐴 < 𝑥) → ¬ (𝐴 / 𝑥) ∈ ℤ) | |
12 | 11 | 3expia 1151 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ)) |
13 | 10, 12 | sylan 576 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ)) |
14 | 13 | con2d 132 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → ¬ 𝐴 < 𝑥)) |
15 | nnre 11321 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
16 | lenlt 10407 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) | |
17 | 10, 15, 16 | syl2an 590 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) |
18 | 14, 17 | sylibrd 251 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥 ≤ 𝐴)) |
19 | 18 | ancoms 451 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥 ≤ 𝐴)) |
20 | 9, 19 | syl5 34 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 ≤ 𝐴)) |
21 | 20 | pm4.71rd 559 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ ↔ (𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
22 | 21 | anbi2d 623 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))) |
23 | 3anass 1117 | . . . . . 6 ⊢ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) | |
24 | 22, 23 | syl6bbr 281 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
25 | 8, 24 | bitr3d 273 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
26 | 25 | imbi1d 333 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
27 | 5, 26 | syl5bb 275 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
28 | 27 | ralbidva 3167 | 1 ⊢ (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 ∀wral 3090 class class class wbr 4844 (class class class)co 6879 ℝcr 10224 1c1 10226 < clt 10364 ≤ cle 10365 / cdiv 10977 ℕcn 11313 ℤcz 11665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-div 10978 df-nn 11314 df-n0 11580 df-z 11666 |
This theorem is referenced by: infpnlem1 15946 |
Copyright terms: Public domain | W3C validator |