MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prime Structured version   Visualization version   GIF version

Theorem prime 12724
Description: Two ways to express "𝐴 is a prime number (or 1)". See also isprm 16720. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
prime (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem prime
StepHypRef Expression
1 bi2.04 387 . . . 4 ((𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴)))
2 impexp 450 . . . 4 (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴)))
3 neor 3040 . . . . 5 ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴))
43imbi2i 336 . . . 4 (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴)))
51, 2, 43bitr4ri 304 . . 3 (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))
6 nngt1ne1 12322 . . . . . . 7 (𝑥 ∈ ℕ → (1 < 𝑥𝑥 ≠ 1))
76adantl 481 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (1 < 𝑥𝑥 ≠ 1))
87anbi1d 630 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ)))
9 nnz 12660 . . . . . . . . 9 ((𝐴 / 𝑥) ∈ ℕ → (𝐴 / 𝑥) ∈ ℤ)
10 nnre 12300 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
11 gtndiv 12720 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝐴 < 𝑥) → ¬ (𝐴 / 𝑥) ∈ ℤ)
12113expia 1121 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ))
1310, 12sylan 579 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ))
1413con2d 134 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → ¬ 𝐴 < 𝑥))
15 nnre 12300 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
16 lenlt 11368 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
1710, 15, 16syl2an 595 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
1814, 17sylibrd 259 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥𝐴))
1918ancoms 458 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥𝐴))
209, 19syl5 34 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → 𝑥𝐴))
2120pm4.71rd 562 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ ↔ (𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
2221anbi2d 629 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))))
23 3anass 1095 . . . . . 6 ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
2422, 23bitr4di 289 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
258, 24bitr3d 281 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
2625imbi1d 341 . . 3 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
275, 26bitrid 283 . 2 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
2827ralbidva 3182 1 (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067   class class class wbr 5166  (class class class)co 7448  cr 11183  1c1 11185   < clt 11324  cle 11325   / cdiv 11947  cn 12293  cz 12639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640
This theorem is referenced by:  infpnlem1  16957
  Copyright terms: Public domain W3C validator