Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leat2 Structured version   Visualization version   GIF version

Theorem leat2 37072
Description: A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013.)
Hypotheses
Ref Expression
leatom.b 𝐵 = (Base‘𝐾)
leatom.l = (le‘𝐾)
leatom.z 0 = (0.‘𝐾)
leatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
leat2 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋0𝑋 𝑃)) → 𝑋 = 𝑃)

Proof of Theorem leat2
StepHypRef Expression
1 leatom.b . . . . . 6 𝐵 = (Base‘𝐾)
2 leatom.l . . . . . 6 = (le‘𝐾)
3 leatom.z . . . . . 6 0 = (0.‘𝐾)
4 leatom.a . . . . . 6 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4leatb 37070 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 𝑃𝑋 = 0 )))
6 orcom 870 . . . . . 6 ((𝑋 = 𝑃𝑋 = 0 ) ↔ (𝑋 = 0𝑋 = 𝑃))
7 neor 3034 . . . . . 6 ((𝑋 = 0𝑋 = 𝑃) ↔ (𝑋0𝑋 = 𝑃))
86, 7bitri 278 . . . . 5 ((𝑋 = 𝑃𝑋 = 0 ) ↔ (𝑋0𝑋 = 𝑃))
95, 8bitrdi 290 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋0𝑋 = 𝑃)))
109biimpd 232 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 → (𝑋0𝑋 = 𝑃)))
1110com23 86 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋0 → (𝑋 𝑃𝑋 = 𝑃)))
1211imp32 422 1 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋0𝑋 𝑃)) → 𝑋 = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2111  wne 2941   class class class wbr 5068  cfv 6398  Basecbs 16785  lecple 16834  0.cp0 17954  OPcops 36950  Atomscatm 37041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-proset 17827  df-poset 17845  df-plt 17861  df-glb 17878  df-p0 17956  df-oposet 36954  df-covers 37044  df-ats 37045
This theorem is referenced by:  dalemcea  37438  cdlemg12g  38427
  Copyright terms: Public domain W3C validator