Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leat2 Structured version   Visualization version   GIF version

Theorem leat2 39341
Description: A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013.)
Hypotheses
Ref Expression
leatom.b 𝐵 = (Base‘𝐾)
leatom.l = (le‘𝐾)
leatom.z 0 = (0.‘𝐾)
leatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
leat2 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋0𝑋 𝑃)) → 𝑋 = 𝑃)

Proof of Theorem leat2
StepHypRef Expression
1 leatom.b . . . . . 6 𝐵 = (Base‘𝐾)
2 leatom.l . . . . . 6 = (le‘𝐾)
3 leatom.z . . . . . 6 0 = (0.‘𝐾)
4 leatom.a . . . . . 6 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4leatb 39339 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 𝑃𝑋 = 0 )))
6 orcom 870 . . . . . 6 ((𝑋 = 𝑃𝑋 = 0 ) ↔ (𝑋 = 0𝑋 = 𝑃))
7 neor 3020 . . . . . 6 ((𝑋 = 0𝑋 = 𝑃) ↔ (𝑋0𝑋 = 𝑃))
86, 7bitri 275 . . . . 5 ((𝑋 = 𝑃𝑋 = 0 ) ↔ (𝑋0𝑋 = 𝑃))
95, 8bitrdi 287 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋0𝑋 = 𝑃)))
109biimpd 229 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 → (𝑋0𝑋 = 𝑃)))
1110com23 86 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋0 → (𝑋 𝑃𝑋 = 𝑃)))
1211imp32 418 1 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋0𝑋 𝑃)) → 𝑋 = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  Basecbs 17120  lecple 17168  0.cp0 18327  OPcops 39219  Atomscatm 39310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-proset 18200  df-poset 18219  df-plt 18234  df-glb 18251  df-p0 18329  df-oposet 39223  df-covers 39313  df-ats 39314
This theorem is referenced by:  dalemcea  39707  cdlemg12g  40696
  Copyright terms: Public domain W3C validator