Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > leat2 | Structured version Visualization version GIF version |
Description: A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013.) |
Ref | Expression |
---|---|
leatom.b | ⊢ 𝐵 = (Base‘𝐾) |
leatom.l | ⊢ ≤ = (le‘𝐾) |
leatom.z | ⊢ 0 = (0.‘𝐾) |
leatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
leat2 | ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ≠ 0 ∧ 𝑋 ≤ 𝑃)) → 𝑋 = 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leatom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | leatom.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | leatom.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
4 | leatom.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | leatb 37070 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) |
6 | orcom 870 | . . . . . 6 ⊢ ((𝑋 = 𝑃 ∨ 𝑋 = 0 ) ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃)) | |
7 | neor 3034 | . . . . . 6 ⊢ ((𝑋 = 0 ∨ 𝑋 = 𝑃) ↔ (𝑋 ≠ 0 → 𝑋 = 𝑃)) | |
8 | 6, 7 | bitri 278 | . . . . 5 ⊢ ((𝑋 = 𝑃 ∨ 𝑋 = 0 ) ↔ (𝑋 ≠ 0 → 𝑋 = 𝑃)) |
9 | 5, 8 | bitrdi 290 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 ≠ 0 → 𝑋 = 𝑃))) |
10 | 9 | biimpd 232 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 → (𝑋 ≠ 0 → 𝑋 = 𝑃))) |
11 | 10 | com23 86 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≠ 0 → (𝑋 ≤ 𝑃 → 𝑋 = 𝑃))) |
12 | 11 | imp32 422 | 1 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ≠ 0 ∧ 𝑋 ≤ 𝑃)) → 𝑋 = 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 847 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 class class class wbr 5068 ‘cfv 6398 Basecbs 16785 lecple 16834 0.cp0 17954 OPcops 36950 Atomscatm 37041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-id 5470 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-proset 17827 df-poset 17845 df-plt 17861 df-glb 17878 df-p0 17956 df-oposet 36954 df-covers 37044 df-ats 37045 |
This theorem is referenced by: dalemcea 37438 cdlemg12g 38427 |
Copyright terms: Public domain | W3C validator |