Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leat2 Structured version   Visualization version   GIF version

Theorem leat2 37235
Description: A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013.)
Hypotheses
Ref Expression
leatom.b 𝐵 = (Base‘𝐾)
leatom.l = (le‘𝐾)
leatom.z 0 = (0.‘𝐾)
leatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
leat2 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋0𝑋 𝑃)) → 𝑋 = 𝑃)

Proof of Theorem leat2
StepHypRef Expression
1 leatom.b . . . . . 6 𝐵 = (Base‘𝐾)
2 leatom.l . . . . . 6 = (le‘𝐾)
3 leatom.z . . . . . 6 0 = (0.‘𝐾)
4 leatom.a . . . . . 6 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4leatb 37233 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋 = 𝑃𝑋 = 0 )))
6 orcom 866 . . . . . 6 ((𝑋 = 𝑃𝑋 = 0 ) ↔ (𝑋 = 0𝑋 = 𝑃))
7 neor 3035 . . . . . 6 ((𝑋 = 0𝑋 = 𝑃) ↔ (𝑋0𝑋 = 𝑃))
86, 7bitri 274 . . . . 5 ((𝑋 = 𝑃𝑋 = 0 ) ↔ (𝑋0𝑋 = 𝑃))
95, 8bitrdi 286 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 ↔ (𝑋0𝑋 = 𝑃)))
109biimpd 228 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋 𝑃 → (𝑋0𝑋 = 𝑃)))
1110com23 86 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) → (𝑋0 → (𝑋 𝑃𝑋 = 𝑃)))
1211imp32 418 1 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ (𝑋0𝑋 𝑃)) → 𝑋 = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895  0.cp0 18056  OPcops 37113  Atomscatm 37204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-proset 17928  df-poset 17946  df-plt 17963  df-glb 17980  df-p0 18058  df-oposet 37117  df-covers 37207  df-ats 37208
This theorem is referenced by:  dalemcea  37601  cdlemg12g  38590
  Copyright terms: Public domain W3C validator