![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > leat2 | Structured version Visualization version GIF version |
Description: A nonzero poset element less than or equal to an atom equals the atom. (Contributed by NM, 6-Mar-2013.) |
Ref | Expression |
---|---|
leatom.b | ⊢ 𝐵 = (Base‘𝐾) |
leatom.l | ⊢ ≤ = (le‘𝐾) |
leatom.z | ⊢ 0 = (0.‘𝐾) |
leatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
leat2 | ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ≠ 0 ∧ 𝑋 ≤ 𝑃)) → 𝑋 = 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leatom.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | leatom.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
3 | leatom.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
4 | leatom.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | leatb 38894 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))) |
6 | orcom 868 | . . . . . 6 ⊢ ((𝑋 = 𝑃 ∨ 𝑋 = 0 ) ↔ (𝑋 = 0 ∨ 𝑋 = 𝑃)) | |
7 | neor 3023 | . . . . . 6 ⊢ ((𝑋 = 0 ∨ 𝑋 = 𝑃) ↔ (𝑋 ≠ 0 → 𝑋 = 𝑃)) | |
8 | 6, 7 | bitri 274 | . . . . 5 ⊢ ((𝑋 = 𝑃 ∨ 𝑋 = 0 ) ↔ (𝑋 ≠ 0 → 𝑋 = 𝑃)) |
9 | 5, 8 | bitrdi 286 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 ↔ (𝑋 ≠ 0 → 𝑋 = 𝑃))) |
10 | 9 | biimpd 228 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≤ 𝑃 → (𝑋 ≠ 0 → 𝑋 = 𝑃))) |
11 | 10 | com23 86 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 ≠ 0 → (𝑋 ≤ 𝑃 → 𝑋 = 𝑃))) |
12 | 11 | imp32 417 | 1 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ≠ 0 ∧ 𝑋 ≤ 𝑃)) → 𝑋 = 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5149 ‘cfv 6549 Basecbs 17183 lecple 17243 0.cp0 18418 OPcops 38774 Atomscatm 38865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-proset 18290 df-poset 18308 df-plt 18325 df-glb 18342 df-p0 18420 df-oposet 38778 df-covers 38868 df-ats 38869 |
This theorem is referenced by: dalemcea 39263 cdlemg12g 40252 |
Copyright terms: Public domain | W3C validator |