Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnmat Structured version   Visualization version   GIF version

Theorem 2llnmat 39525
Description: Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
2llnmat.m = (meet‘𝐾)
2llnmat.z 0 = (0.‘𝐾)
2llnmat.a 𝐴 = (Atoms‘𝐾)
2llnmat.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
2llnmat (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)

Proof of Theorem 2llnmat
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ HL)
2 hlatl 39360 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
31, 2syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ AtLat)
41hllatd 39364 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ Lat)
5 simpl2 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑋𝑁)
6 eqid 2730 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
7 2llnmat.n . . . . . . 7 𝑁 = (LLines‘𝐾)
86, 7llnbase 39510 . . . . . 6 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
95, 8syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑋 ∈ (Base‘𝐾))
10 simpl3 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑌𝑁)
116, 7llnbase 39510 . . . . . 6 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
1210, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑌 ∈ (Base‘𝐾))
13 2llnmat.m . . . . . 6 = (meet‘𝐾)
146, 13latmcl 18406 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
154, 9, 12, 14syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ (Base‘𝐾))
16 simprr 772 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ≠ 0 )
17 eqid 2730 . . . . 5 (le‘𝐾) = (le‘𝐾)
18 2llnmat.z . . . . 5 0 = (0.‘𝐾)
19 2llnmat.a . . . . 5 𝐴 = (Atoms‘𝐾)
206, 17, 18, 19atlex 39316 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ≠ 0 ) → ∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌))
213, 15, 16, 20syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌))
22 simp1rl 1239 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑋𝑌)
23 simp1l 1198 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁))
2417, 7llncmp 39523 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
2523, 24syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
26 simp1l1 1267 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ HL)
2726hllatd 39364 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ Lat)
28 simp1l2 1268 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑋𝑁)
2928, 8syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
30 simp1l3 1269 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑌𝑁)
3130, 11syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
326, 17, 13latleeqm1 18433 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 𝑌) = 𝑋))
3327, 29, 31, 32syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 𝑌) = 𝑋))
3425, 33bitr3d 281 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 = 𝑌 ↔ (𝑋 𝑌) = 𝑋))
3534necon3bid 2970 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋𝑌 ↔ (𝑋 𝑌) ≠ 𝑋))
3622, 35mpbid 232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ≠ 𝑋)
37 simp3 1138 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌))
386, 17, 13latmle1 18430 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌)(le‘𝐾)𝑋)
3927, 29, 31, 38syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌)(le‘𝐾)𝑋)
40 hlpos 39366 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4126, 40syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ Poset)
426, 19atbase 39289 . . . . . . . . . . 11 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
43423ad2ant2 1134 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝 ∈ (Base‘𝐾))
4427, 29, 31, 14syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ (Base‘𝐾))
45 simp2 1137 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝𝐴)
466, 17, 27, 43, 44, 29, 37, 39lattrd 18412 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)𝑋)
47 eqid 2730 . . . . . . . . . . . 12 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4817, 47, 19, 7atcvrlln2 39520 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑋𝑁) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝( ⋖ ‘𝐾)𝑋)
4926, 45, 28, 46, 48syl31anc 1375 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝( ⋖ ‘𝐾)𝑋)
506, 17, 47cvrnbtwn4 39279 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ 𝑝( ⋖ ‘𝐾)𝑋) → ((𝑝(le‘𝐾)(𝑋 𝑌) ∧ (𝑋 𝑌)(le‘𝐾)𝑋) ↔ (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋)))
5141, 43, 29, 44, 49, 50syl131anc 1385 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → ((𝑝(le‘𝐾)(𝑋 𝑌) ∧ (𝑋 𝑌)(le‘𝐾)𝑋) ↔ (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋)))
5237, 39, 51mpbi2and 712 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋))
53 neor 3018 . . . . . . . 8 ((𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋) ↔ (𝑝 ≠ (𝑋 𝑌) → (𝑋 𝑌) = 𝑋))
5452, 53sylib 218 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑝 ≠ (𝑋 𝑌) → (𝑋 𝑌) = 𝑋))
5554necon1d 2948 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → ((𝑋 𝑌) ≠ 𝑋𝑝 = (𝑋 𝑌)))
5636, 55mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝 = (𝑋 𝑌))
57563exp 1119 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑝𝐴 → (𝑝(le‘𝐾)(𝑋 𝑌) → 𝑝 = (𝑋 𝑌))))
5857reximdvai 3145 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌) → ∃𝑝𝐴 𝑝 = (𝑋 𝑌)))
5921, 58mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ∃𝑝𝐴 𝑝 = (𝑋 𝑌))
60 risset 3213 . 2 ((𝑋 𝑌) ∈ 𝐴 ↔ ∃𝑝𝐴 𝑝 = (𝑋 𝑌))
6159, 60sylibr 234 1 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  Posetcpo 18275  meetcmee 18280  0.cp0 18389  Latclat 18397  ccvr 39262  Atomscatm 39263  AtLatcal 39264  HLchlt 39350  LLinesclln 39492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499
This theorem is referenced by:  2at0mat0  39526  ps-2c  39529  2llnmeqat  39572  dalemcea  39661  dalem2  39662  dalem21  39695  dalem54  39727  cdlemc5  40196
  Copyright terms: Public domain W3C validator