Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnmat Structured version   Visualization version   GIF version

Theorem 2llnmat 39526
Description: Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
2llnmat.m = (meet‘𝐾)
2llnmat.z 0 = (0.‘𝐾)
2llnmat.a 𝐴 = (Atoms‘𝐾)
2llnmat.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
2llnmat (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)

Proof of Theorem 2llnmat
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ HL)
2 hlatl 39361 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
31, 2syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ AtLat)
41hllatd 39365 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝐾 ∈ Lat)
5 simpl2 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑋𝑁)
6 eqid 2737 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
7 2llnmat.n . . . . . . 7 𝑁 = (LLines‘𝐾)
86, 7llnbase 39511 . . . . . 6 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
95, 8syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑋 ∈ (Base‘𝐾))
10 simpl3 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑌𝑁)
116, 7llnbase 39511 . . . . . 6 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
1210, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → 𝑌 ∈ (Base‘𝐾))
13 2llnmat.m . . . . . 6 = (meet‘𝐾)
146, 13latmcl 18485 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
154, 9, 12, 14syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ (Base‘𝐾))
16 simprr 773 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ≠ 0 )
17 eqid 2737 . . . . 5 (le‘𝐾) = (le‘𝐾)
18 2llnmat.z . . . . 5 0 = (0.‘𝐾)
19 2llnmat.a . . . . 5 𝐴 = (Atoms‘𝐾)
206, 17, 18, 19atlex 39317 . . . 4 ((𝐾 ∈ AtLat ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ≠ 0 ) → ∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌))
213, 15, 16, 20syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌))
22 simp1rl 1239 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑋𝑌)
23 simp1l 1198 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁))
2417, 7llncmp 39524 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
2523, 24syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋(le‘𝐾)𝑌𝑋 = 𝑌))
26 simp1l1 1267 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ HL)
2726hllatd 39365 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ Lat)
28 simp1l2 1268 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑋𝑁)
2928, 8syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑋 ∈ (Base‘𝐾))
30 simp1l3 1269 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑌𝑁)
3130, 11syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
326, 17, 13latleeqm1 18512 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 𝑌) = 𝑋))
3327, 29, 31, 32syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋(le‘𝐾)𝑌 ↔ (𝑋 𝑌) = 𝑋))
3425, 33bitr3d 281 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 = 𝑌 ↔ (𝑋 𝑌) = 𝑋))
3534necon3bid 2985 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋𝑌 ↔ (𝑋 𝑌) ≠ 𝑋))
3622, 35mpbid 232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ≠ 𝑋)
37 simp3 1139 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)(𝑋 𝑌))
386, 17, 13latmle1 18509 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌)(le‘𝐾)𝑋)
3927, 29, 31, 38syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌)(le‘𝐾)𝑋)
40 hlpos 39367 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4126, 40syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝐾 ∈ Poset)
426, 19atbase 39290 . . . . . . . . . . 11 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
43423ad2ant2 1135 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝 ∈ (Base‘𝐾))
4427, 29, 31, 14syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑋 𝑌) ∈ (Base‘𝐾))
45 simp2 1138 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝𝐴)
466, 17, 27, 43, 44, 29, 37, 39lattrd 18491 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝(le‘𝐾)𝑋)
47 eqid 2737 . . . . . . . . . . . 12 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4817, 47, 19, 7atcvrlln2 39521 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑋𝑁) ∧ 𝑝(le‘𝐾)𝑋) → 𝑝( ⋖ ‘𝐾)𝑋)
4926, 45, 28, 46, 48syl31anc 1375 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝( ⋖ ‘𝐾)𝑋)
506, 17, 47cvrnbtwn4 39280 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑝 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑋 𝑌) ∈ (Base‘𝐾)) ∧ 𝑝( ⋖ ‘𝐾)𝑋) → ((𝑝(le‘𝐾)(𝑋 𝑌) ∧ (𝑋 𝑌)(le‘𝐾)𝑋) ↔ (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋)))
5141, 43, 29, 44, 49, 50syl131anc 1385 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → ((𝑝(le‘𝐾)(𝑋 𝑌) ∧ (𝑋 𝑌)(le‘𝐾)𝑋) ↔ (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋)))
5237, 39, 51mpbi2and 712 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋))
53 neor 3034 . . . . . . . 8 ((𝑝 = (𝑋 𝑌) ∨ (𝑋 𝑌) = 𝑋) ↔ (𝑝 ≠ (𝑋 𝑌) → (𝑋 𝑌) = 𝑋))
5452, 53sylib 218 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → (𝑝 ≠ (𝑋 𝑌) → (𝑋 𝑌) = 𝑋))
5554necon1d 2962 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → ((𝑋 𝑌) ≠ 𝑋𝑝 = (𝑋 𝑌)))
5636, 55mpd 15 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) ∧ 𝑝𝐴𝑝(le‘𝐾)(𝑋 𝑌)) → 𝑝 = (𝑋 𝑌))
57563exp 1120 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑝𝐴 → (𝑝(le‘𝐾)(𝑋 𝑌) → 𝑝 = (𝑋 𝑌))))
5857reximdvai 3165 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (∃𝑝𝐴 𝑝(le‘𝐾)(𝑋 𝑌) → ∃𝑝𝐴 𝑝 = (𝑋 𝑌)))
5921, 58mpd 15 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → ∃𝑝𝐴 𝑝 = (𝑋 𝑌))
60 risset 3233 . 2 ((𝑋 𝑌) ∈ 𝐴 ↔ ∃𝑝𝐴 𝑝 = (𝑋 𝑌))
6159, 60sylibr 234 1 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑋𝑌 ∧ (𝑋 𝑌) ≠ 0 )) → (𝑋 𝑌) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  Posetcpo 18353  meetcmee 18358  0.cp0 18468  Latclat 18476  ccvr 39263  Atomscatm 39264  AtLatcal 39265  HLchlt 39351  LLinesclln 39493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500
This theorem is referenced by:  2at0mat0  39527  ps-2c  39530  2llnmeqat  39573  dalemcea  39662  dalem2  39663  dalem21  39696  dalem54  39728  cdlemc5  40197
  Copyright terms: Public domain W3C validator