Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isat3 Structured version   Visualization version   GIF version

Theorem isat3 39330
Description: The predicate "is an atom". (elat2 32326 analog.) (Contributed by NM, 27-Apr-2014.)
Hypotheses
Ref Expression
isat3.b 𝐵 = (Base‘𝐾)
isat3.l = (le‘𝐾)
isat3.z 0 = (0.‘𝐾)
isat3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isat3 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑃   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   (𝑥)

Proof of Theorem isat3
StepHypRef Expression
1 isat3.b . . . 4 𝐵 = (Base‘𝐾)
2 isat3.z . . . 4 0 = (0.‘𝐾)
3 eqid 2736 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 isat3.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4isat 39309 . . 3 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵0 ( ⋖ ‘𝐾)𝑃)))
6 simpl 482 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → 𝐾 ∈ AtLat)
71, 2atl0cl 39326 . . . . . . 7 (𝐾 ∈ AtLat → 0𝐵)
87adantr 480 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → 0𝐵)
9 simpr 484 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → 𝑃𝐵)
10 isat3.l . . . . . . 7 = (le‘𝐾)
11 eqid 2736 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
121, 10, 11, 3cvrval2 39297 . . . . . 6 ((𝐾 ∈ AtLat ∧ 0𝐵𝑃𝐵) → ( 0 ( ⋖ ‘𝐾)𝑃 ↔ ( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃))))
136, 8, 9, 12syl3anc 1373 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → ( 0 ( ⋖ ‘𝐾)𝑃 ↔ ( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃))))
141, 11, 2atlltn0 39329 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → ( 0 (lt‘𝐾)𝑃𝑃0 ))
151, 11, 2atlltn0 39329 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑥𝐵) → ( 0 (lt‘𝐾)𝑥𝑥0 ))
1615adantlr 715 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → ( 0 (lt‘𝐾)𝑥𝑥0 ))
1716imbi1d 341 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → (( 0 (lt‘𝐾)𝑥𝑥 = 𝑃) ↔ (𝑥0𝑥 = 𝑃)))
1817imbi2d 340 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → ((𝑥 𝑃 → ( 0 (lt‘𝐾)𝑥𝑥 = 𝑃)) ↔ (𝑥 𝑃 → (𝑥0𝑥 = 𝑃))))
19 impexp 450 . . . . . . . . 9 ((( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ ( 0 (lt‘𝐾)𝑥 → (𝑥 𝑃𝑥 = 𝑃)))
20 bi2.04 387 . . . . . . . . 9 (( 0 (lt‘𝐾)𝑥 → (𝑥 𝑃𝑥 = 𝑃)) ↔ (𝑥 𝑃 → ( 0 (lt‘𝐾)𝑥𝑥 = 𝑃)))
2119, 20bitri 275 . . . . . . . 8 ((( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ (𝑥 𝑃 → ( 0 (lt‘𝐾)𝑥𝑥 = 𝑃)))
22 orcom 870 . . . . . . . . . 10 ((𝑥 = 𝑃𝑥 = 0 ) ↔ (𝑥 = 0𝑥 = 𝑃))
23 neor 3025 . . . . . . . . . 10 ((𝑥 = 0𝑥 = 𝑃) ↔ (𝑥0𝑥 = 𝑃))
2422, 23bitri 275 . . . . . . . . 9 ((𝑥 = 𝑃𝑥 = 0 ) ↔ (𝑥0𝑥 = 𝑃))
2524imbi2i 336 . . . . . . . 8 ((𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )) ↔ (𝑥 𝑃 → (𝑥0𝑥 = 𝑃)))
2618, 21, 253bitr4g 314 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → ((( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))))
2726ralbidva 3162 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → (∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))))
2814, 27anbi12d 632 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → (( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃)) ↔ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
2913, 28bitr2d 280 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → ((𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))) ↔ 0 ( ⋖ ‘𝐾)𝑃))
3029pm5.32da 579 . . 3 (𝐾 ∈ AtLat → ((𝑃𝐵 ∧ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))) ↔ (𝑃𝐵0 ( ⋖ ‘𝐾)𝑃)))
315, 30bitr4d 282 . 2 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵 ∧ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))))))
32 3anass 1094 . 2 ((𝑃𝐵𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))) ↔ (𝑃𝐵 ∧ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
3331, 32bitr4di 289 1 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052   class class class wbr 5124  cfv 6536  Basecbs 17233  lecple 17283  ltcplt 18325  0.cp0 18438  ccvr 39285  Atomscatm 39286  AtLatcal 39287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-plt 18345  df-glb 18362  df-p0 18440  df-covers 39289  df-ats 39290  df-atl 39321
This theorem is referenced by:  atn0  39331  dihlspsnat  41357
  Copyright terms: Public domain W3C validator