Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isat3 Structured version   Visualization version   GIF version

Theorem isat3 38165
Description: The predicate "is an atom". (elat2 31580 analog.) (Contributed by NM, 27-Apr-2014.)
Hypotheses
Ref Expression
isat3.b 𝐡 = (Baseβ€˜πΎ)
isat3.l ≀ = (leβ€˜πΎ)
isat3.z 0 = (0.β€˜πΎ)
isat3.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
isat3 (𝐾 ∈ AtLat β†’ (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐡 ∧ 𝑃 β‰  0 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑃 β†’ (π‘₯ = 𝑃 ∨ π‘₯ = 0 )))))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝐾   π‘₯,𝑃   π‘₯, 0
Allowed substitution hints:   𝐴(π‘₯)   ≀ (π‘₯)

Proof of Theorem isat3
StepHypRef Expression
1 isat3.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 isat3.z . . . 4 0 = (0.β€˜πΎ)
3 eqid 2732 . . . 4 ( β‹– β€˜πΎ) = ( β‹– β€˜πΎ)
4 isat3.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
51, 2, 3, 4isat 38144 . . 3 (𝐾 ∈ AtLat β†’ (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐡 ∧ 0 ( β‹– β€˜πΎ)𝑃)))
6 simpl 483 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐡) β†’ 𝐾 ∈ AtLat)
71, 2atl0cl 38161 . . . . . . 7 (𝐾 ∈ AtLat β†’ 0 ∈ 𝐡)
87adantr 481 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐡) β†’ 0 ∈ 𝐡)
9 simpr 485 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐡) β†’ 𝑃 ∈ 𝐡)
10 isat3.l . . . . . . 7 ≀ = (leβ€˜πΎ)
11 eqid 2732 . . . . . . 7 (ltβ€˜πΎ) = (ltβ€˜πΎ)
121, 10, 11, 3cvrval2 38132 . . . . . 6 ((𝐾 ∈ AtLat ∧ 0 ∈ 𝐡 ∧ 𝑃 ∈ 𝐡) β†’ ( 0 ( β‹– β€˜πΎ)𝑃 ↔ ( 0 (ltβ€˜πΎ)𝑃 ∧ βˆ€π‘₯ ∈ 𝐡 (( 0 (ltβ€˜πΎ)π‘₯ ∧ π‘₯ ≀ 𝑃) β†’ π‘₯ = 𝑃))))
136, 8, 9, 12syl3anc 1371 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐡) β†’ ( 0 ( β‹– β€˜πΎ)𝑃 ↔ ( 0 (ltβ€˜πΎ)𝑃 ∧ βˆ€π‘₯ ∈ 𝐡 (( 0 (ltβ€˜πΎ)π‘₯ ∧ π‘₯ ≀ 𝑃) β†’ π‘₯ = 𝑃))))
141, 11, 2atlltn0 38164 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐡) β†’ ( 0 (ltβ€˜πΎ)𝑃 ↔ 𝑃 β‰  0 ))
151, 11, 2atlltn0 38164 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ π‘₯ ∈ 𝐡) β†’ ( 0 (ltβ€˜πΎ)π‘₯ ↔ π‘₯ β‰  0 ))
1615adantlr 713 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐡) ∧ π‘₯ ∈ 𝐡) β†’ ( 0 (ltβ€˜πΎ)π‘₯ ↔ π‘₯ β‰  0 ))
1716imbi1d 341 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐡) ∧ π‘₯ ∈ 𝐡) β†’ (( 0 (ltβ€˜πΎ)π‘₯ β†’ π‘₯ = 𝑃) ↔ (π‘₯ β‰  0 β†’ π‘₯ = 𝑃)))
1817imbi2d 340 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐡) ∧ π‘₯ ∈ 𝐡) β†’ ((π‘₯ ≀ 𝑃 β†’ ( 0 (ltβ€˜πΎ)π‘₯ β†’ π‘₯ = 𝑃)) ↔ (π‘₯ ≀ 𝑃 β†’ (π‘₯ β‰  0 β†’ π‘₯ = 𝑃))))
19 impexp 451 . . . . . . . . 9 ((( 0 (ltβ€˜πΎ)π‘₯ ∧ π‘₯ ≀ 𝑃) β†’ π‘₯ = 𝑃) ↔ ( 0 (ltβ€˜πΎ)π‘₯ β†’ (π‘₯ ≀ 𝑃 β†’ π‘₯ = 𝑃)))
20 bi2.04 388 . . . . . . . . 9 (( 0 (ltβ€˜πΎ)π‘₯ β†’ (π‘₯ ≀ 𝑃 β†’ π‘₯ = 𝑃)) ↔ (π‘₯ ≀ 𝑃 β†’ ( 0 (ltβ€˜πΎ)π‘₯ β†’ π‘₯ = 𝑃)))
2119, 20bitri 274 . . . . . . . 8 ((( 0 (ltβ€˜πΎ)π‘₯ ∧ π‘₯ ≀ 𝑃) β†’ π‘₯ = 𝑃) ↔ (π‘₯ ≀ 𝑃 β†’ ( 0 (ltβ€˜πΎ)π‘₯ β†’ π‘₯ = 𝑃)))
22 orcom 868 . . . . . . . . . 10 ((π‘₯ = 𝑃 ∨ π‘₯ = 0 ) ↔ (π‘₯ = 0 ∨ π‘₯ = 𝑃))
23 neor 3034 . . . . . . . . . 10 ((π‘₯ = 0 ∨ π‘₯ = 𝑃) ↔ (π‘₯ β‰  0 β†’ π‘₯ = 𝑃))
2422, 23bitri 274 . . . . . . . . 9 ((π‘₯ = 𝑃 ∨ π‘₯ = 0 ) ↔ (π‘₯ β‰  0 β†’ π‘₯ = 𝑃))
2524imbi2i 335 . . . . . . . 8 ((π‘₯ ≀ 𝑃 β†’ (π‘₯ = 𝑃 ∨ π‘₯ = 0 )) ↔ (π‘₯ ≀ 𝑃 β†’ (π‘₯ β‰  0 β†’ π‘₯ = 𝑃)))
2618, 21, 253bitr4g 313 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐡) ∧ π‘₯ ∈ 𝐡) β†’ ((( 0 (ltβ€˜πΎ)π‘₯ ∧ π‘₯ ≀ 𝑃) β†’ π‘₯ = 𝑃) ↔ (π‘₯ ≀ 𝑃 β†’ (π‘₯ = 𝑃 ∨ π‘₯ = 0 ))))
2726ralbidva 3175 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐡) β†’ (βˆ€π‘₯ ∈ 𝐡 (( 0 (ltβ€˜πΎ)π‘₯ ∧ π‘₯ ≀ 𝑃) β†’ π‘₯ = 𝑃) ↔ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑃 β†’ (π‘₯ = 𝑃 ∨ π‘₯ = 0 ))))
2814, 27anbi12d 631 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐡) β†’ (( 0 (ltβ€˜πΎ)𝑃 ∧ βˆ€π‘₯ ∈ 𝐡 (( 0 (ltβ€˜πΎ)π‘₯ ∧ π‘₯ ≀ 𝑃) β†’ π‘₯ = 𝑃)) ↔ (𝑃 β‰  0 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑃 β†’ (π‘₯ = 𝑃 ∨ π‘₯ = 0 )))))
2913, 28bitr2d 279 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐡) β†’ ((𝑃 β‰  0 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑃 β†’ (π‘₯ = 𝑃 ∨ π‘₯ = 0 ))) ↔ 0 ( β‹– β€˜πΎ)𝑃))
3029pm5.32da 579 . . 3 (𝐾 ∈ AtLat β†’ ((𝑃 ∈ 𝐡 ∧ (𝑃 β‰  0 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑃 β†’ (π‘₯ = 𝑃 ∨ π‘₯ = 0 )))) ↔ (𝑃 ∈ 𝐡 ∧ 0 ( β‹– β€˜πΎ)𝑃)))
315, 30bitr4d 281 . 2 (𝐾 ∈ AtLat β†’ (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐡 ∧ (𝑃 β‰  0 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑃 β†’ (π‘₯ = 𝑃 ∨ π‘₯ = 0 ))))))
32 3anass 1095 . 2 ((𝑃 ∈ 𝐡 ∧ 𝑃 β‰  0 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑃 β†’ (π‘₯ = 𝑃 ∨ π‘₯ = 0 ))) ↔ (𝑃 ∈ 𝐡 ∧ (𝑃 β‰  0 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑃 β†’ (π‘₯ = 𝑃 ∨ π‘₯ = 0 )))))
3331, 32bitr4di 288 1 (𝐾 ∈ AtLat β†’ (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐡 ∧ 𝑃 β‰  0 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ ≀ 𝑃 β†’ (π‘₯ = 𝑃 ∨ π‘₯ = 0 )))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   class class class wbr 5147  β€˜cfv 6540  Basecbs 17140  lecple 17200  ltcplt 18257  0.cp0 18372   β‹– ccvr 38120  Atomscatm 38121  AtLatcal 38122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-plt 18279  df-glb 18296  df-p0 18374  df-covers 38124  df-ats 38125  df-atl 38156
This theorem is referenced by:  atn0  38166  dihlspsnat  40192
  Copyright terms: Public domain W3C validator