Proof of Theorem isat3
Step | Hyp | Ref
| Expression |
1 | | isat3.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
2 | | isat3.z |
. . . 4
⊢ 0 =
(0.‘𝐾) |
3 | | eqid 2738 |
. . . 4
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
4 | | isat3.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
5 | 1, 2, 3, 4 | isat 37300 |
. . 3
⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 0 ( ⋖ ‘𝐾)𝑃))) |
6 | | simpl 483 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵) → 𝐾 ∈ AtLat) |
7 | 1, 2 | atl0cl 37317 |
. . . . . . 7
⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
8 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵) → 0 ∈ 𝐵) |
9 | | simpr 485 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵) → 𝑃 ∈ 𝐵) |
10 | | isat3.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
11 | | eqid 2738 |
. . . . . . 7
⊢
(lt‘𝐾) =
(lt‘𝐾) |
12 | 1, 10, 11, 3 | cvrval2 37288 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → ( 0 ( ⋖ ‘𝐾)𝑃 ↔ ( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥 ∈ 𝐵 (( 0 (lt‘𝐾)𝑥 ∧ 𝑥 ≤ 𝑃) → 𝑥 = 𝑃)))) |
13 | 6, 8, 9, 12 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵) → ( 0 ( ⋖ ‘𝐾)𝑃 ↔ ( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥 ∈ 𝐵 (( 0 (lt‘𝐾)𝑥 ∧ 𝑥 ≤ 𝑃) → 𝑥 = 𝑃)))) |
14 | 1, 11, 2 | atlltn0 37320 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵) → ( 0 (lt‘𝐾)𝑃 ↔ 𝑃 ≠ 0 )) |
15 | 1, 11, 2 | atlltn0 37320 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ AtLat ∧ 𝑥 ∈ 𝐵) → ( 0 (lt‘𝐾)𝑥 ↔ 𝑥 ≠ 0 )) |
16 | 15 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ( 0 (lt‘𝐾)𝑥 ↔ 𝑥 ≠ 0 )) |
17 | 16 | imbi1d 342 |
. . . . . . . . 9
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (( 0 (lt‘𝐾)𝑥 → 𝑥 = 𝑃) ↔ (𝑥 ≠ 0 → 𝑥 = 𝑃))) |
18 | 17 | imbi2d 341 |
. . . . . . . 8
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((𝑥 ≤ 𝑃 → ( 0 (lt‘𝐾)𝑥 → 𝑥 = 𝑃)) ↔ (𝑥 ≤ 𝑃 → (𝑥 ≠ 0 → 𝑥 = 𝑃)))) |
19 | | impexp 451 |
. . . . . . . . 9
⊢ ((( 0
(lt‘𝐾)𝑥 ∧ 𝑥 ≤ 𝑃) → 𝑥 = 𝑃) ↔ ( 0 (lt‘𝐾)𝑥 → (𝑥 ≤ 𝑃 → 𝑥 = 𝑃))) |
20 | | bi2.04 389 |
. . . . . . . . 9
⊢ (( 0
(lt‘𝐾)𝑥 → (𝑥 ≤ 𝑃 → 𝑥 = 𝑃)) ↔ (𝑥 ≤ 𝑃 → ( 0 (lt‘𝐾)𝑥 → 𝑥 = 𝑃))) |
21 | 19, 20 | bitri 274 |
. . . . . . . 8
⊢ ((( 0
(lt‘𝐾)𝑥 ∧ 𝑥 ≤ 𝑃) → 𝑥 = 𝑃) ↔ (𝑥 ≤ 𝑃 → ( 0 (lt‘𝐾)𝑥 → 𝑥 = 𝑃))) |
22 | | orcom 867 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑃 ∨ 𝑥 = 0 ) ↔ (𝑥 = 0 ∨ 𝑥 = 𝑃)) |
23 | | neor 3036 |
. . . . . . . . . 10
⊢ ((𝑥 = 0 ∨ 𝑥 = 𝑃) ↔ (𝑥 ≠ 0 → 𝑥 = 𝑃)) |
24 | 22, 23 | bitri 274 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑃 ∨ 𝑥 = 0 ) ↔ (𝑥 ≠ 0 → 𝑥 = 𝑃)) |
25 | 24 | imbi2i 336 |
. . . . . . . 8
⊢ ((𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 )) ↔ (𝑥 ≤ 𝑃 → (𝑥 ≠ 0 → 𝑥 = 𝑃))) |
26 | 18, 21, 25 | 3bitr4g 314 |
. . . . . . 7
⊢ (((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → ((( 0 (lt‘𝐾)𝑥 ∧ 𝑥 ≤ 𝑃) → 𝑥 = 𝑃) ↔ (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 )))) |
27 | 26 | ralbidva 3111 |
. . . . . 6
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 (( 0 (lt‘𝐾)𝑥 ∧ 𝑥 ≤ 𝑃) → 𝑥 = 𝑃) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 )))) |
28 | 14, 27 | anbi12d 631 |
. . . . 5
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵) → (( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥 ∈ 𝐵 (( 0 (lt‘𝐾)𝑥 ∧ 𝑥 ≤ 𝑃) → 𝑥 = 𝑃)) ↔ (𝑃 ≠ 0 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))))) |
29 | 13, 28 | bitr2d 279 |
. . . 4
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐵) → ((𝑃 ≠ 0 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))) ↔ 0 ( ⋖
‘𝐾)𝑃)) |
30 | 29 | pm5.32da 579 |
. . 3
⊢ (𝐾 ∈ AtLat → ((𝑃 ∈ 𝐵 ∧ (𝑃 ≠ 0 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 )))) ↔ (𝑃 ∈ 𝐵 ∧ 0 ( ⋖ ‘𝐾)𝑃))) |
31 | 5, 30 | bitr4d 281 |
. 2
⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ (𝑃 ≠ 0 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 )))))) |
32 | | 3anass 1094 |
. 2
⊢ ((𝑃 ∈ 𝐵 ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))) ↔ (𝑃 ∈ 𝐵 ∧ (𝑃 ≠ 0 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))))) |
33 | 31, 32 | bitr4di 289 |
1
⊢ (𝐾 ∈ AtLat → (𝑃 ∈ 𝐴 ↔ (𝑃 ∈ 𝐵 ∧ 𝑃 ≠ 0 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≤ 𝑃 → (𝑥 = 𝑃 ∨ 𝑥 = 0 ))))) |