Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isat3 Structured version   Visualization version   GIF version

Theorem isat3 39263
Description: The predicate "is an atom". (elat2 32372 analog.) (Contributed by NM, 27-Apr-2014.)
Hypotheses
Ref Expression
isat3.b 𝐵 = (Base‘𝐾)
isat3.l = (le‘𝐾)
isat3.z 0 = (0.‘𝐾)
isat3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isat3 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑃   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   (𝑥)

Proof of Theorem isat3
StepHypRef Expression
1 isat3.b . . . 4 𝐵 = (Base‘𝐾)
2 isat3.z . . . 4 0 = (0.‘𝐾)
3 eqid 2740 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 isat3.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4isat 39242 . . 3 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵0 ( ⋖ ‘𝐾)𝑃)))
6 simpl 482 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → 𝐾 ∈ AtLat)
71, 2atl0cl 39259 . . . . . . 7 (𝐾 ∈ AtLat → 0𝐵)
87adantr 480 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → 0𝐵)
9 simpr 484 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → 𝑃𝐵)
10 isat3.l . . . . . . 7 = (le‘𝐾)
11 eqid 2740 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
121, 10, 11, 3cvrval2 39230 . . . . . 6 ((𝐾 ∈ AtLat ∧ 0𝐵𝑃𝐵) → ( 0 ( ⋖ ‘𝐾)𝑃 ↔ ( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃))))
136, 8, 9, 12syl3anc 1371 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → ( 0 ( ⋖ ‘𝐾)𝑃 ↔ ( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃))))
141, 11, 2atlltn0 39262 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → ( 0 (lt‘𝐾)𝑃𝑃0 ))
151, 11, 2atlltn0 39262 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑥𝐵) → ( 0 (lt‘𝐾)𝑥𝑥0 ))
1615adantlr 714 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → ( 0 (lt‘𝐾)𝑥𝑥0 ))
1716imbi1d 341 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → (( 0 (lt‘𝐾)𝑥𝑥 = 𝑃) ↔ (𝑥0𝑥 = 𝑃)))
1817imbi2d 340 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → ((𝑥 𝑃 → ( 0 (lt‘𝐾)𝑥𝑥 = 𝑃)) ↔ (𝑥 𝑃 → (𝑥0𝑥 = 𝑃))))
19 impexp 450 . . . . . . . . 9 ((( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ ( 0 (lt‘𝐾)𝑥 → (𝑥 𝑃𝑥 = 𝑃)))
20 bi2.04 387 . . . . . . . . 9 (( 0 (lt‘𝐾)𝑥 → (𝑥 𝑃𝑥 = 𝑃)) ↔ (𝑥 𝑃 → ( 0 (lt‘𝐾)𝑥𝑥 = 𝑃)))
2119, 20bitri 275 . . . . . . . 8 ((( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ (𝑥 𝑃 → ( 0 (lt‘𝐾)𝑥𝑥 = 𝑃)))
22 orcom 869 . . . . . . . . . 10 ((𝑥 = 𝑃𝑥 = 0 ) ↔ (𝑥 = 0𝑥 = 𝑃))
23 neor 3040 . . . . . . . . . 10 ((𝑥 = 0𝑥 = 𝑃) ↔ (𝑥0𝑥 = 𝑃))
2422, 23bitri 275 . . . . . . . . 9 ((𝑥 = 𝑃𝑥 = 0 ) ↔ (𝑥0𝑥 = 𝑃))
2524imbi2i 336 . . . . . . . 8 ((𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )) ↔ (𝑥 𝑃 → (𝑥0𝑥 = 𝑃)))
2618, 21, 253bitr4g 314 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → ((( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))))
2726ralbidva 3182 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → (∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))))
2814, 27anbi12d 631 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → (( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃)) ↔ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
2913, 28bitr2d 280 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → ((𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))) ↔ 0 ( ⋖ ‘𝐾)𝑃))
3029pm5.32da 578 . . 3 (𝐾 ∈ AtLat → ((𝑃𝐵 ∧ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))) ↔ (𝑃𝐵0 ( ⋖ ‘𝐾)𝑃)))
315, 30bitr4d 282 . 2 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵 ∧ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))))))
32 3anass 1095 . 2 ((𝑃𝐵𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))) ↔ (𝑃𝐵 ∧ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
3331, 32bitr4di 289 1 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  ltcplt 18378  0.cp0 18493  ccvr 39218  Atomscatm 39219  AtLatcal 39220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-plt 18400  df-glb 18417  df-p0 18495  df-covers 39222  df-ats 39223  df-atl 39254
This theorem is referenced by:  atn0  39264  dihlspsnat  41290
  Copyright terms: Public domain W3C validator