Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isat3 Structured version   Visualization version   GIF version

Theorem isat3 39289
Description: The predicate "is an atom". (elat2 32369 analog.) (Contributed by NM, 27-Apr-2014.)
Hypotheses
Ref Expression
isat3.b 𝐵 = (Base‘𝐾)
isat3.l = (le‘𝐾)
isat3.z 0 = (0.‘𝐾)
isat3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
isat3 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑃   𝑥, 0
Allowed substitution hints:   𝐴(𝑥)   (𝑥)

Proof of Theorem isat3
StepHypRef Expression
1 isat3.b . . . 4 𝐵 = (Base‘𝐾)
2 isat3.z . . . 4 0 = (0.‘𝐾)
3 eqid 2735 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 isat3.a . . . 4 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4isat 39268 . . 3 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵0 ( ⋖ ‘𝐾)𝑃)))
6 simpl 482 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → 𝐾 ∈ AtLat)
71, 2atl0cl 39285 . . . . . . 7 (𝐾 ∈ AtLat → 0𝐵)
87adantr 480 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → 0𝐵)
9 simpr 484 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → 𝑃𝐵)
10 isat3.l . . . . . . 7 = (le‘𝐾)
11 eqid 2735 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
121, 10, 11, 3cvrval2 39256 . . . . . 6 ((𝐾 ∈ AtLat ∧ 0𝐵𝑃𝐵) → ( 0 ( ⋖ ‘𝐾)𝑃 ↔ ( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃))))
136, 8, 9, 12syl3anc 1370 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → ( 0 ( ⋖ ‘𝐾)𝑃 ↔ ( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃))))
141, 11, 2atlltn0 39288 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → ( 0 (lt‘𝐾)𝑃𝑃0 ))
151, 11, 2atlltn0 39288 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ 𝑥𝐵) → ( 0 (lt‘𝐾)𝑥𝑥0 ))
1615adantlr 715 . . . . . . . . . 10 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → ( 0 (lt‘𝐾)𝑥𝑥0 ))
1716imbi1d 341 . . . . . . . . 9 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → (( 0 (lt‘𝐾)𝑥𝑥 = 𝑃) ↔ (𝑥0𝑥 = 𝑃)))
1817imbi2d 340 . . . . . . . 8 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → ((𝑥 𝑃 → ( 0 (lt‘𝐾)𝑥𝑥 = 𝑃)) ↔ (𝑥 𝑃 → (𝑥0𝑥 = 𝑃))))
19 impexp 450 . . . . . . . . 9 ((( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ ( 0 (lt‘𝐾)𝑥 → (𝑥 𝑃𝑥 = 𝑃)))
20 bi2.04 387 . . . . . . . . 9 (( 0 (lt‘𝐾)𝑥 → (𝑥 𝑃𝑥 = 𝑃)) ↔ (𝑥 𝑃 → ( 0 (lt‘𝐾)𝑥𝑥 = 𝑃)))
2119, 20bitri 275 . . . . . . . 8 ((( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ (𝑥 𝑃 → ( 0 (lt‘𝐾)𝑥𝑥 = 𝑃)))
22 orcom 870 . . . . . . . . . 10 ((𝑥 = 𝑃𝑥 = 0 ) ↔ (𝑥 = 0𝑥 = 𝑃))
23 neor 3032 . . . . . . . . . 10 ((𝑥 = 0𝑥 = 𝑃) ↔ (𝑥0𝑥 = 𝑃))
2422, 23bitri 275 . . . . . . . . 9 ((𝑥 = 𝑃𝑥 = 0 ) ↔ (𝑥0𝑥 = 𝑃))
2524imbi2i 336 . . . . . . . 8 ((𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )) ↔ (𝑥 𝑃 → (𝑥0𝑥 = 𝑃)))
2618, 21, 253bitr4g 314 . . . . . . 7 (((𝐾 ∈ AtLat ∧ 𝑃𝐵) ∧ 𝑥𝐵) → ((( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))))
2726ralbidva 3174 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → (∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃) ↔ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))))
2814, 27anbi12d 632 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → (( 0 (lt‘𝐾)𝑃 ∧ ∀𝑥𝐵 (( 0 (lt‘𝐾)𝑥𝑥 𝑃) → 𝑥 = 𝑃)) ↔ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
2913, 28bitr2d 280 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃𝐵) → ((𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))) ↔ 0 ( ⋖ ‘𝐾)𝑃))
3029pm5.32da 579 . . 3 (𝐾 ∈ AtLat → ((𝑃𝐵 ∧ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))) ↔ (𝑃𝐵0 ( ⋖ ‘𝐾)𝑃)))
315, 30bitr4d 282 . 2 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵 ∧ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))))))
32 3anass 1094 . 2 ((𝑃𝐵𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 ))) ↔ (𝑃𝐵 ∧ (𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
3331, 32bitr4di 289 1 (𝐾 ∈ AtLat → (𝑃𝐴 ↔ (𝑃𝐵𝑃0 ∧ ∀𝑥𝐵 (𝑥 𝑃 → (𝑥 = 𝑃𝑥 = 0 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059   class class class wbr 5148  cfv 6563  Basecbs 17245  lecple 17305  ltcplt 18366  0.cp0 18481  ccvr 39244  Atomscatm 39245  AtLatcal 39246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-plt 18388  df-glb 18405  df-p0 18483  df-covers 39248  df-ats 39249  df-atl 39280
This theorem is referenced by:  atn0  39290  dihlspsnat  41316
  Copyright terms: Public domain W3C validator