Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngidl Structured version   Visualization version   GIF version

Theorem divrngidl 38047
Description: The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
divrngidl.1 𝐺 = (1st𝑅)
divrngidl.2 𝐻 = (2nd𝑅)
divrngidl.3 𝑋 = ran 𝐺
divrngidl.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
divrngidl (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋})

Proof of Theorem divrngidl
Dummy variables 𝑖 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divrngidl.1 . . 3 𝐺 = (1st𝑅)
2 divrngidl.2 . . 3 𝐻 = (2nd𝑅)
3 divrngidl.4 . . 3 𝑍 = (GId‘𝐺)
4 divrngidl.3 . . 3 𝑋 = ran 𝐺
5 eqid 2730 . . 3 (GId‘𝐻) = (GId‘𝐻)
61, 2, 3, 4, 5isdrngo2 37977 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻))))
71, 3idl0cl 38037 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑍𝑖)
87adantr 480 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → 𝑍𝑖)
93fvexi 6831 . . . . . . . . . . . . 13 𝑍 ∈ V
109snss 4735 . . . . . . . . . . . 12 (𝑍𝑖 ↔ {𝑍} ⊆ 𝑖)
11 necom 2979 . . . . . . . . . . . 12 (𝑖 ≠ {𝑍} ↔ {𝑍} ≠ 𝑖)
12 pssdifn0 4316 . . . . . . . . . . . . 13 (({𝑍} ⊆ 𝑖 ∧ {𝑍} ≠ 𝑖) → (𝑖 ∖ {𝑍}) ≠ ∅)
13 n0 4301 . . . . . . . . . . . . 13 ((𝑖 ∖ {𝑍}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}))
1412, 13sylib 218 . . . . . . . . . . . 12 (({𝑍} ⊆ 𝑖 ∧ {𝑍} ≠ 𝑖) → ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}))
1510, 11, 14syl2anb 598 . . . . . . . . . . 11 ((𝑍𝑖𝑖 ≠ {𝑍}) → ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}))
161, 4idlss 38035 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖𝑋)
17 ssdif 4092 . . . . . . . . . . . . . . . . . 18 (𝑖𝑋 → (𝑖 ∖ {𝑍}) ⊆ (𝑋 ∖ {𝑍}))
1817sselda 3932 . . . . . . . . . . . . . . . . 17 ((𝑖𝑋𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑧 ∈ (𝑋 ∖ {𝑍}))
1916, 18sylan 580 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑧 ∈ (𝑋 ∖ {𝑍}))
20 oveq2 7349 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑦𝐻𝑥) = (𝑦𝐻𝑧))
2120eqeq1d 2732 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝑦𝐻𝑥) = (GId‘𝐻) ↔ (𝑦𝐻𝑧) = (GId‘𝐻)))
2221rexbidv 3154 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻) ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻)))
2322rspcva 3573 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻))
2419, 23sylan 580 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻))
25 eldifi 4079 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑧𝑖)
26 eldifi 4079 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑋 ∖ {𝑍}) → 𝑦𝑋)
2725, 26anim12i 613 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (𝑖 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → (𝑧𝑖𝑦𝑋))
281, 2, 4idllmulcl 38039 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → (𝑦𝐻𝑧) ∈ 𝑖)
291, 2, 4, 51idl 38045 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋))
3029biimpd 229 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋))
3130adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋))
32 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐻𝑧) = (GId‘𝐻) → ((𝑦𝐻𝑧) ∈ 𝑖 ↔ (GId‘𝐻) ∈ 𝑖))
3332imbi1d 341 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐻𝑧) = (GId‘𝐻) → (((𝑦𝐻𝑧) ∈ 𝑖𝑖 = 𝑋) ↔ ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋)))
3431, 33syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → ((𝑦𝐻𝑧) = (GId‘𝐻) → ((𝑦𝐻𝑧) ∈ 𝑖𝑖 = 𝑋)))
3528, 34mpid 44 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3627, 35sylan2 593 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧 ∈ (𝑖 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍}))) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3736anassrs 467 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3837rexlimdva 3131 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3938imp 406 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻)) → 𝑖 = 𝑋)
4024, 39syldan 591 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → 𝑖 = 𝑋)
4140an32s 652 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑖 = 𝑋)
4241ex 412 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑖 = 𝑋))
4342exlimdv 1934 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑖 = 𝑋))
4415, 43syl5 34 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ((𝑍𝑖𝑖 ≠ {𝑍}) → 𝑖 = 𝑋))
458, 44mpand 695 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ≠ {𝑍} → 𝑖 = 𝑋))
4645an32s 652 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑖 ≠ {𝑍} → 𝑖 = 𝑋))
47 neor 3018 . . . . . . . 8 ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ↔ (𝑖 ≠ {𝑍} → 𝑖 = 𝑋))
4846, 47sylibr 234 . . . . . . 7 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
4948ex 412 . . . . . 6 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) → (𝑖 = {𝑍} ∨ 𝑖 = 𝑋)))
501, 30idl 38044 . . . . . . . . 9 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
51 eleq1 2817 . . . . . . . . 9 (𝑖 = {𝑍} → (𝑖 ∈ (Idl‘𝑅) ↔ {𝑍} ∈ (Idl‘𝑅)))
5250, 51syl5ibrcom 247 . . . . . . . 8 (𝑅 ∈ RingOps → (𝑖 = {𝑍} → 𝑖 ∈ (Idl‘𝑅)))
531, 4rngoidl 38043 . . . . . . . . 9 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
54 eleq1 2817 . . . . . . . . 9 (𝑖 = 𝑋 → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑋 ∈ (Idl‘𝑅)))
5553, 54syl5ibrcom 247 . . . . . . . 8 (𝑅 ∈ RingOps → (𝑖 = 𝑋𝑖 ∈ (Idl‘𝑅)))
5652, 55jaod 859 . . . . . . 7 (𝑅 ∈ RingOps → ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) → 𝑖 ∈ (Idl‘𝑅)))
5756adantr 480 . . . . . 6 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) → 𝑖 ∈ (Idl‘𝑅)))
5849, 57impbid 212 . . . . 5 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋)))
59 vex 3438 . . . . . 6 𝑖 ∈ V
6059elpr 4599 . . . . 5 (𝑖 ∈ {{𝑍}, 𝑋} ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
6158, 60bitr4di 289 . . . 4 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑖 ∈ {{𝑍}, 𝑋}))
6261eqrdv 2728 . . 3 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (Idl‘𝑅) = {{𝑍}, 𝑋})
6362adantrl 716 . 2 ((𝑅 ∈ RingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻))) → (Idl‘𝑅) = {{𝑍}, 𝑋})
646, 63sylbi 217 1 (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2110  wne 2926  wral 3045  wrex 3054  cdif 3897  wss 3900  c0 4281  {csn 4574  {cpr 4576  ran crn 5615  cfv 6477  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  GIdcgi 30460  RingOpscrngo 37913  DivRingOpscdrng 37967  Idlcidl 38026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-1st 7916  df-2nd 7917  df-1o 8380  df-en 8865  df-grpo 30463  df-gid 30464  df-ginv 30465  df-ablo 30515  df-ass 37862  df-exid 37864  df-mgmOLD 37868  df-sgrOLD 37880  df-mndo 37886  df-rngo 37914  df-drngo 37968  df-idl 38029
This theorem is referenced by:  divrngpr  38072  isfldidl  38087
  Copyright terms: Public domain W3C validator