Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngidl Structured version   Visualization version   GIF version

Theorem divrngidl 38007
Description: The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
divrngidl.1 𝐺 = (1st𝑅)
divrngidl.2 𝐻 = (2nd𝑅)
divrngidl.3 𝑋 = ran 𝐺
divrngidl.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
divrngidl (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋})

Proof of Theorem divrngidl
Dummy variables 𝑖 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divrngidl.1 . . 3 𝐺 = (1st𝑅)
2 divrngidl.2 . . 3 𝐻 = (2nd𝑅)
3 divrngidl.4 . . 3 𝑍 = (GId‘𝐺)
4 divrngidl.3 . . 3 𝑋 = ran 𝐺
5 eqid 2729 . . 3 (GId‘𝐻) = (GId‘𝐻)
61, 2, 3, 4, 5isdrngo2 37937 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻))))
71, 3idl0cl 37997 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑍𝑖)
87adantr 480 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → 𝑍𝑖)
93fvexi 6840 . . . . . . . . . . . . 13 𝑍 ∈ V
109snss 4739 . . . . . . . . . . . 12 (𝑍𝑖 ↔ {𝑍} ⊆ 𝑖)
11 necom 2978 . . . . . . . . . . . 12 (𝑖 ≠ {𝑍} ↔ {𝑍} ≠ 𝑖)
12 pssdifn0 4321 . . . . . . . . . . . . 13 (({𝑍} ⊆ 𝑖 ∧ {𝑍} ≠ 𝑖) → (𝑖 ∖ {𝑍}) ≠ ∅)
13 n0 4306 . . . . . . . . . . . . 13 ((𝑖 ∖ {𝑍}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}))
1412, 13sylib 218 . . . . . . . . . . . 12 (({𝑍} ⊆ 𝑖 ∧ {𝑍} ≠ 𝑖) → ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}))
1510, 11, 14syl2anb 598 . . . . . . . . . . 11 ((𝑍𝑖𝑖 ≠ {𝑍}) → ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}))
161, 4idlss 37995 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖𝑋)
17 ssdif 4097 . . . . . . . . . . . . . . . . . 18 (𝑖𝑋 → (𝑖 ∖ {𝑍}) ⊆ (𝑋 ∖ {𝑍}))
1817sselda 3937 . . . . . . . . . . . . . . . . 17 ((𝑖𝑋𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑧 ∈ (𝑋 ∖ {𝑍}))
1916, 18sylan 580 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑧 ∈ (𝑋 ∖ {𝑍}))
20 oveq2 7361 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑦𝐻𝑥) = (𝑦𝐻𝑧))
2120eqeq1d 2731 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝑦𝐻𝑥) = (GId‘𝐻) ↔ (𝑦𝐻𝑧) = (GId‘𝐻)))
2221rexbidv 3153 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻) ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻)))
2322rspcva 3577 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻))
2419, 23sylan 580 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻))
25 eldifi 4084 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑧𝑖)
26 eldifi 4084 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑋 ∖ {𝑍}) → 𝑦𝑋)
2725, 26anim12i 613 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (𝑖 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → (𝑧𝑖𝑦𝑋))
281, 2, 4idllmulcl 37999 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → (𝑦𝐻𝑧) ∈ 𝑖)
291, 2, 4, 51idl 38005 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋))
3029biimpd 229 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋))
3130adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋))
32 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐻𝑧) = (GId‘𝐻) → ((𝑦𝐻𝑧) ∈ 𝑖 ↔ (GId‘𝐻) ∈ 𝑖))
3332imbi1d 341 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐻𝑧) = (GId‘𝐻) → (((𝑦𝐻𝑧) ∈ 𝑖𝑖 = 𝑋) ↔ ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋)))
3431, 33syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → ((𝑦𝐻𝑧) = (GId‘𝐻) → ((𝑦𝐻𝑧) ∈ 𝑖𝑖 = 𝑋)))
3528, 34mpid 44 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3627, 35sylan2 593 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧 ∈ (𝑖 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍}))) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3736anassrs 467 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3837rexlimdva 3130 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3938imp 406 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻)) → 𝑖 = 𝑋)
4024, 39syldan 591 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → 𝑖 = 𝑋)
4140an32s 652 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑖 = 𝑋)
4241ex 412 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑖 = 𝑋))
4342exlimdv 1933 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑖 = 𝑋))
4415, 43syl5 34 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ((𝑍𝑖𝑖 ≠ {𝑍}) → 𝑖 = 𝑋))
458, 44mpand 695 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ≠ {𝑍} → 𝑖 = 𝑋))
4645an32s 652 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑖 ≠ {𝑍} → 𝑖 = 𝑋))
47 neor 3017 . . . . . . . 8 ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ↔ (𝑖 ≠ {𝑍} → 𝑖 = 𝑋))
4846, 47sylibr 234 . . . . . . 7 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
4948ex 412 . . . . . 6 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) → (𝑖 = {𝑍} ∨ 𝑖 = 𝑋)))
501, 30idl 38004 . . . . . . . . 9 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
51 eleq1 2816 . . . . . . . . 9 (𝑖 = {𝑍} → (𝑖 ∈ (Idl‘𝑅) ↔ {𝑍} ∈ (Idl‘𝑅)))
5250, 51syl5ibrcom 247 . . . . . . . 8 (𝑅 ∈ RingOps → (𝑖 = {𝑍} → 𝑖 ∈ (Idl‘𝑅)))
531, 4rngoidl 38003 . . . . . . . . 9 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
54 eleq1 2816 . . . . . . . . 9 (𝑖 = 𝑋 → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑋 ∈ (Idl‘𝑅)))
5553, 54syl5ibrcom 247 . . . . . . . 8 (𝑅 ∈ RingOps → (𝑖 = 𝑋𝑖 ∈ (Idl‘𝑅)))
5652, 55jaod 859 . . . . . . 7 (𝑅 ∈ RingOps → ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) → 𝑖 ∈ (Idl‘𝑅)))
5756adantr 480 . . . . . 6 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) → 𝑖 ∈ (Idl‘𝑅)))
5849, 57impbid 212 . . . . 5 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋)))
59 vex 3442 . . . . . 6 𝑖 ∈ V
6059elpr 4604 . . . . 5 (𝑖 ∈ {{𝑍}, 𝑋} ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
6158, 60bitr4di 289 . . . 4 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑖 ∈ {{𝑍}, 𝑋}))
6261eqrdv 2727 . . 3 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (Idl‘𝑅) = {{𝑍}, 𝑋})
6362adantrl 716 . 2 ((𝑅 ∈ RingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻))) → (Idl‘𝑅) = {{𝑍}, 𝑋})
646, 63sylbi 217 1 (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3902  wss 3905  c0 4286  {csn 4579  {cpr 4581  ran crn 5624  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  GIdcgi 30452  RingOpscrngo 37873  DivRingOpscdrng 37927  Idlcidl 37986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-1st 7931  df-2nd 7932  df-1o 8395  df-en 8880  df-grpo 30455  df-gid 30456  df-ginv 30457  df-ablo 30507  df-ass 37822  df-exid 37824  df-mgmOLD 37828  df-sgrOLD 37840  df-mndo 37846  df-rngo 37874  df-drngo 37928  df-idl 37989
This theorem is referenced by:  divrngpr  38032  isfldidl  38047
  Copyright terms: Public domain W3C validator