Step | Hyp | Ref
| Expression |
1 | | divrngidl.1 |
. . 3
⊢ 𝐺 = (1st ‘𝑅) |
2 | | divrngidl.2 |
. . 3
⊢ 𝐻 = (2nd ‘𝑅) |
3 | | divrngidl.4 |
. . 3
⊢ 𝑍 = (GId‘𝐺) |
4 | | divrngidl.3 |
. . 3
⊢ 𝑋 = ran 𝐺 |
5 | | eqid 2738 |
. . 3
⊢
(GId‘𝐻) =
(GId‘𝐻) |
6 | 1, 2, 3, 4, 5 | isdrngo2 36116 |
. 2
⊢ (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧
((GId‘𝐻) ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)))) |
7 | 1, 3 | idl0cl 36176 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑍 ∈ 𝑖) |
8 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → 𝑍 ∈ 𝑖) |
9 | 3 | fvexi 6788 |
. . . . . . . . . . . . 13
⊢ 𝑍 ∈ V |
10 | 9 | snss 4719 |
. . . . . . . . . . . 12
⊢ (𝑍 ∈ 𝑖 ↔ {𝑍} ⊆ 𝑖) |
11 | | necom 2997 |
. . . . . . . . . . . 12
⊢ (𝑖 ≠ {𝑍} ↔ {𝑍} ≠ 𝑖) |
12 | | pssdifn0 4299 |
. . . . . . . . . . . . 13
⊢ (({𝑍} ⊆ 𝑖 ∧ {𝑍} ≠ 𝑖) → (𝑖 ∖ {𝑍}) ≠ ∅) |
13 | | n0 4280 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∖ {𝑍}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍})) |
14 | 12, 13 | sylib 217 |
. . . . . . . . . . . 12
⊢ (({𝑍} ⊆ 𝑖 ∧ {𝑍} ≠ 𝑖) → ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍})) |
15 | 10, 11, 14 | syl2anb 598 |
. . . . . . . . . . 11
⊢ ((𝑍 ∈ 𝑖 ∧ 𝑖 ≠ {𝑍}) → ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍})) |
16 | 1, 4 | idlss 36174 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖 ⊆ 𝑋) |
17 | | ssdif 4074 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ⊆ 𝑋 → (𝑖 ∖ {𝑍}) ⊆ (𝑋 ∖ {𝑍})) |
18 | 17 | sselda 3921 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ⊆ 𝑋 ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑧 ∈ (𝑋 ∖ {𝑍})) |
19 | 16, 18 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑧 ∈ (𝑋 ∖ {𝑍})) |
20 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑧 → (𝑦𝐻𝑥) = (𝑦𝐻𝑧)) |
21 | 20 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → ((𝑦𝐻𝑥) = (GId‘𝐻) ↔ (𝑦𝐻𝑧) = (GId‘𝐻))) |
22 | 21 | rexbidv 3226 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻) ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻))) |
23 | 22 | rspcva 3559 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻)) |
24 | 19, 23 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻)) |
25 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑧 ∈ 𝑖) |
26 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (𝑋 ∖ {𝑍}) → 𝑦 ∈ 𝑋) |
27 | 25, 26 | anim12i 613 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ (𝑖 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → (𝑧 ∈ 𝑖 ∧ 𝑦 ∈ 𝑋)) |
28 | 1, 2, 4 | idllmulcl 36178 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧 ∈ 𝑖 ∧ 𝑦 ∈ 𝑋)) → (𝑦𝐻𝑧) ∈ 𝑖) |
29 | 1, 2, 4, 5 | 1idl 36184 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((GId‘𝐻) ∈ 𝑖 ↔ 𝑖 = 𝑋)) |
30 | 29 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((GId‘𝐻) ∈ 𝑖 → 𝑖 = 𝑋)) |
31 | 30 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧 ∈ 𝑖 ∧ 𝑦 ∈ 𝑋)) → ((GId‘𝐻) ∈ 𝑖 → 𝑖 = 𝑋)) |
32 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦𝐻𝑧) = (GId‘𝐻) → ((𝑦𝐻𝑧) ∈ 𝑖 ↔ (GId‘𝐻) ∈ 𝑖)) |
33 | 32 | imbi1d 342 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦𝐻𝑧) = (GId‘𝐻) → (((𝑦𝐻𝑧) ∈ 𝑖 → 𝑖 = 𝑋) ↔ ((GId‘𝐻) ∈ 𝑖 → 𝑖 = 𝑋))) |
34 | 31, 33 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧 ∈ 𝑖 ∧ 𝑦 ∈ 𝑋)) → ((𝑦𝐻𝑧) = (GId‘𝐻) → ((𝑦𝐻𝑧) ∈ 𝑖 → 𝑖 = 𝑋))) |
35 | 28, 34 | mpid 44 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧 ∈ 𝑖 ∧ 𝑦 ∈ 𝑋)) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋)) |
36 | 27, 35 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧 ∈ (𝑖 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍}))) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋)) |
37 | 36 | anassrs 468 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋)) |
38 | 37 | rexlimdva 3213 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋)) |
39 | 38 | imp 407 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻)) → 𝑖 = 𝑋) |
40 | 24, 39 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → 𝑖 = 𝑋) |
41 | 40 | an32s 649 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑖 = 𝑋) |
42 | 41 | ex 413 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑖 = 𝑋)) |
43 | 42 | exlimdv 1936 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑖 = 𝑋)) |
44 | 15, 43 | syl5 34 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ((𝑍 ∈ 𝑖 ∧ 𝑖 ≠ {𝑍}) → 𝑖 = 𝑋)) |
45 | 8, 44 | mpand 692 |
. . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ≠ {𝑍} → 𝑖 = 𝑋)) |
46 | 45 | an32s 649 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧
∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑖 ≠ {𝑍} → 𝑖 = 𝑋)) |
47 | | neor 3036 |
. . . . . . . 8
⊢ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ↔ (𝑖 ≠ {𝑍} → 𝑖 = 𝑋)) |
48 | 46, 47 | sylibr 233 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧
∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑖 = {𝑍} ∨ 𝑖 = 𝑋)) |
49 | 48 | ex 413 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧
∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) → (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))) |
50 | 1, 3 | 0idl 36183 |
. . . . . . . . 9
⊢ (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅)) |
51 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑖 = {𝑍} → (𝑖 ∈ (Idl‘𝑅) ↔ {𝑍} ∈ (Idl‘𝑅))) |
52 | 50, 51 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (𝑅 ∈ RingOps → (𝑖 = {𝑍} → 𝑖 ∈ (Idl‘𝑅))) |
53 | 1, 4 | rngoidl 36182 |
. . . . . . . . 9
⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
54 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑖 = 𝑋 → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑋 ∈ (Idl‘𝑅))) |
55 | 53, 54 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (𝑅 ∈ RingOps → (𝑖 = 𝑋 → 𝑖 ∈ (Idl‘𝑅))) |
56 | 52, 55 | jaod 856 |
. . . . . . 7
⊢ (𝑅 ∈ RingOps → ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) → 𝑖 ∈ (Idl‘𝑅))) |
57 | 56 | adantr 481 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧
∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) → 𝑖 ∈ (Idl‘𝑅))) |
58 | 49, 57 | impbid 211 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧
∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))) |
59 | | vex 3436 |
. . . . . 6
⊢ 𝑖 ∈ V |
60 | 59 | elpr 4584 |
. . . . 5
⊢ (𝑖 ∈ {{𝑍}, 𝑋} ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋)) |
61 | 58, 60 | bitr4di 289 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧
∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑖 ∈ {{𝑍}, 𝑋})) |
62 | 61 | eqrdv 2736 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧
∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (Idl‘𝑅) = {{𝑍}, 𝑋}) |
63 | 62 | adantrl 713 |
. 2
⊢ ((𝑅 ∈ RingOps ∧
((GId‘𝐻) ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻))) → (Idl‘𝑅) = {{𝑍}, 𝑋}) |
64 | 6, 63 | sylbi 216 |
1
⊢ (𝑅 ∈ DivRingOps →
(Idl‘𝑅) = {{𝑍}, 𝑋}) |