Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  divrngidl Structured version   Visualization version   GIF version

Theorem divrngidl 36884
Description: The only ideals in a division ring are the zero ideal and the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
divrngidl.1 𝐺 = (1st𝑅)
divrngidl.2 𝐻 = (2nd𝑅)
divrngidl.3 𝑋 = ran 𝐺
divrngidl.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
divrngidl (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋})

Proof of Theorem divrngidl
Dummy variables 𝑖 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 divrngidl.1 . . 3 𝐺 = (1st𝑅)
2 divrngidl.2 . . 3 𝐻 = (2nd𝑅)
3 divrngidl.4 . . 3 𝑍 = (GId‘𝐺)
4 divrngidl.3 . . 3 𝑋 = ran 𝐺
5 eqid 2732 . . 3 (GId‘𝐻) = (GId‘𝐻)
61, 2, 3, 4, 5isdrngo2 36814 . 2 (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻))))
71, 3idl0cl 36874 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑍𝑖)
87adantr 481 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → 𝑍𝑖)
93fvexi 6902 . . . . . . . . . . . . 13 𝑍 ∈ V
109snss 4788 . . . . . . . . . . . 12 (𝑍𝑖 ↔ {𝑍} ⊆ 𝑖)
11 necom 2994 . . . . . . . . . . . 12 (𝑖 ≠ {𝑍} ↔ {𝑍} ≠ 𝑖)
12 pssdifn0 4364 . . . . . . . . . . . . 13 (({𝑍} ⊆ 𝑖 ∧ {𝑍} ≠ 𝑖) → (𝑖 ∖ {𝑍}) ≠ ∅)
13 n0 4345 . . . . . . . . . . . . 13 ((𝑖 ∖ {𝑍}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}))
1412, 13sylib 217 . . . . . . . . . . . 12 (({𝑍} ⊆ 𝑖 ∧ {𝑍} ≠ 𝑖) → ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}))
1510, 11, 14syl2anb 598 . . . . . . . . . . 11 ((𝑍𝑖𝑖 ≠ {𝑍}) → ∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}))
161, 4idlss 36872 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → 𝑖𝑋)
17 ssdif 4138 . . . . . . . . . . . . . . . . . 18 (𝑖𝑋 → (𝑖 ∖ {𝑍}) ⊆ (𝑋 ∖ {𝑍}))
1817sselda 3981 . . . . . . . . . . . . . . . . 17 ((𝑖𝑋𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑧 ∈ (𝑋 ∖ {𝑍}))
1916, 18sylan 580 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑧 ∈ (𝑋 ∖ {𝑍}))
20 oveq2 7413 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑦𝐻𝑥) = (𝑦𝐻𝑧))
2120eqeq1d 2734 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝑦𝐻𝑥) = (GId‘𝐻) ↔ (𝑦𝐻𝑧) = (GId‘𝐻)))
2221rexbidv 3178 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻) ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻)))
2322rspcva 3610 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻))
2419, 23sylan 580 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻))
25 eldifi 4125 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑧𝑖)
26 eldifi 4125 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑋 ∖ {𝑍}) → 𝑦𝑋)
2725, 26anim12i 613 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (𝑖 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → (𝑧𝑖𝑦𝑋))
281, 2, 4idllmulcl 36876 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → (𝑦𝐻𝑧) ∈ 𝑖)
291, 2, 4, 51idl 36882 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋))
3029biimpd 228 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) → ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋))
3130adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋))
32 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐻𝑧) = (GId‘𝐻) → ((𝑦𝐻𝑧) ∈ 𝑖 ↔ (GId‘𝐻) ∈ 𝑖))
3332imbi1d 341 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝐻𝑧) = (GId‘𝐻) → (((𝑦𝐻𝑧) ∈ 𝑖𝑖 = 𝑋) ↔ ((GId‘𝐻) ∈ 𝑖𝑖 = 𝑋)))
3431, 33syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → ((𝑦𝐻𝑧) = (GId‘𝐻) → ((𝑦𝐻𝑧) ∈ 𝑖𝑖 = 𝑋)))
3528, 34mpid 44 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧𝑖𝑦𝑋)) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3627, 35sylan2 593 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ (𝑧 ∈ (𝑖 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍}))) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3736anassrs 468 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → ((𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3837rexlimdva 3155 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻) → 𝑖 = 𝑋))
3938imp 407 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑧) = (GId‘𝐻)) → 𝑖 = 𝑋)
4024, 39syldan 591 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → 𝑖 = 𝑋)
4140an32s 650 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑧 ∈ (𝑖 ∖ {𝑍})) → 𝑖 = 𝑋)
4241ex 413 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑖 = 𝑋))
4342exlimdv 1936 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (∃𝑧 𝑧 ∈ (𝑖 ∖ {𝑍}) → 𝑖 = 𝑋))
4415, 43syl5 34 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ((𝑍𝑖𝑖 ≠ {𝑍}) → 𝑖 = 𝑋))
458, 44mpand 693 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑖 ∈ (Idl‘𝑅)) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ≠ {𝑍} → 𝑖 = 𝑋))
4645an32s 650 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑖 ≠ {𝑍} → 𝑖 = 𝑋))
47 neor 3034 . . . . . . . 8 ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ↔ (𝑖 ≠ {𝑍} → 𝑖 = 𝑋))
4846, 47sylibr 233 . . . . . . 7 (((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) ∧ 𝑖 ∈ (Idl‘𝑅)) → (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
4948ex 413 . . . . . 6 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) → (𝑖 = {𝑍} ∨ 𝑖 = 𝑋)))
501, 30idl 36881 . . . . . . . . 9 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
51 eleq1 2821 . . . . . . . . 9 (𝑖 = {𝑍} → (𝑖 ∈ (Idl‘𝑅) ↔ {𝑍} ∈ (Idl‘𝑅)))
5250, 51syl5ibrcom 246 . . . . . . . 8 (𝑅 ∈ RingOps → (𝑖 = {𝑍} → 𝑖 ∈ (Idl‘𝑅)))
531, 4rngoidl 36880 . . . . . . . . 9 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
54 eleq1 2821 . . . . . . . . 9 (𝑖 = 𝑋 → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑋 ∈ (Idl‘𝑅)))
5553, 54syl5ibrcom 246 . . . . . . . 8 (𝑅 ∈ RingOps → (𝑖 = 𝑋𝑖 ∈ (Idl‘𝑅)))
5652, 55jaod 857 . . . . . . 7 (𝑅 ∈ RingOps → ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) → 𝑖 ∈ (Idl‘𝑅)))
5756adantr 481 . . . . . 6 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) → 𝑖 ∈ (Idl‘𝑅)))
5849, 57impbid 211 . . . . 5 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋)))
59 vex 3478 . . . . . 6 𝑖 ∈ V
6059elpr 4650 . . . . 5 (𝑖 ∈ {{𝑍}, 𝑋} ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
6158, 60bitr4di 288 . . . 4 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑖 ∈ {{𝑍}, 𝑋}))
6261eqrdv 2730 . . 3 ((𝑅 ∈ RingOps ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻)) → (Idl‘𝑅) = {{𝑍}, 𝑋})
6362adantrl 714 . 2 ((𝑅 ∈ RingOps ∧ ((GId‘𝐻) ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = (GId‘𝐻))) → (Idl‘𝑅) = {{𝑍}, 𝑋})
646, 63sylbi 216 1 (𝑅 ∈ DivRingOps → (Idl‘𝑅) = {{𝑍}, 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wex 1781  wcel 2106  wne 2940  wral 3061  wrex 3070  cdif 3944  wss 3947  c0 4321  {csn 4627  {cpr 4629  ran crn 5676  cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  GIdcgi 29730  RingOpscrngo 36750  DivRingOpscdrng 36804  Idlcidl 36863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-1st 7971  df-2nd 7972  df-1o 8462  df-en 8936  df-grpo 29733  df-gid 29734  df-ginv 29735  df-ablo 29785  df-ass 36699  df-exid 36701  df-mgmOLD 36705  df-sgrOLD 36717  df-mndo 36723  df-rngo 36751  df-drngo 36805  df-idl 36866
This theorem is referenced by:  divrngpr  36909  isfldidl  36924
  Copyright terms: Public domain W3C validator