Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fimaxre | Structured version Visualization version GIF version |
Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Steven Nguyen, 3-Jun-2023.) |
Ref | Expression |
---|---|
fimaxre | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 11055 | . . . 4 ⊢ < Or ℝ | |
2 | soss 5523 | . . . 4 ⊢ (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴)) | |
3 | 1, 2 | mpi 20 | . . 3 ⊢ (𝐴 ⊆ ℝ → < Or 𝐴) |
4 | fimaxg 9061 | . . 3 ⊢ (( < Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) | |
5 | 3, 4 | syl3an1 1162 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) |
6 | ssel2 3916 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) | |
7 | 6 | adantrl 713 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ℝ) |
8 | ssel2 3916 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | |
9 | 8 | adantrr 714 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℝ) |
10 | 7, 9 | leloed 11118 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦 ≤ 𝑥 ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
11 | orcom 867 | . . . . . . . . . 10 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦)) | |
12 | equcom 2021 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
13 | 12 | orbi2i 910 | . . . . . . . . . 10 ⊢ ((𝑦 < 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) |
14 | 11, 13 | bitri 274 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
16 | neor 3036 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) | |
17 | 16 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥))) |
18 | 10, 15, 17 | 3bitr2d 307 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦 ≤ 𝑥 ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥))) |
19 | 18 | biimprd 247 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → 𝑦 ≤ 𝑥)) |
20 | 19 | anassrs 468 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → 𝑦 ≤ 𝑥)) |
21 | 20 | ralimdva 3108 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
22 | 21 | reximdva 3203 | . . 3 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
23 | 22 | 3ad2ant1 1132 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
24 | 5, 23 | mpd 15 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 Or wor 5502 Fincfn 8733 ℝcr 10870 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: fimaxre2 11920 0ram2 16722 0ramcl 16724 prmgaplem3 16754 ballotlemfc0 32459 ballotlemfcc 32460 filbcmb 35898 |
Copyright terms: Public domain | W3C validator |