![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimaxre | Structured version Visualization version GIF version |
Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Steven Nguyen, 3-Jun-2023.) |
Ref | Expression |
---|---|
fimaxre | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 11344 | . . . 4 ⊢ < Or ℝ | |
2 | soss 5614 | . . . 4 ⊢ (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴)) | |
3 | 1, 2 | mpi 20 | . . 3 ⊢ (𝐴 ⊆ ℝ → < Or 𝐴) |
4 | fimaxg 9324 | . . 3 ⊢ (( < Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) | |
5 | 3, 4 | syl3an1 1160 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) |
6 | ssel2 3974 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) | |
7 | 6 | adantrl 714 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ℝ) |
8 | ssel2 3974 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | |
9 | 8 | adantrr 715 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℝ) |
10 | 7, 9 | leloed 11407 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦 ≤ 𝑥 ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
11 | orcom 868 | . . . . . . . . . 10 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦)) | |
12 | equcom 2014 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
13 | 12 | orbi2i 910 | . . . . . . . . . 10 ⊢ ((𝑦 < 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) |
14 | 11, 13 | bitri 274 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
16 | neor 3024 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) | |
17 | 16 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥))) |
18 | 10, 15, 17 | 3bitr2d 306 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦 ≤ 𝑥 ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥))) |
19 | 18 | biimprd 247 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → 𝑦 ≤ 𝑥)) |
20 | 19 | anassrs 466 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → 𝑦 ≤ 𝑥)) |
21 | 20 | ralimdva 3157 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
22 | 21 | reximdva 3158 | . . 3 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
23 | 22 | 3ad2ant1 1130 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
24 | 5, 23 | mpd 15 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∧ w3a 1084 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 ⊆ wss 3947 ∅c0 4325 class class class wbr 5153 Or wor 5593 Fincfn 8974 ℝcr 11157 < clt 11298 ≤ cle 11299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11215 ax-pre-lttri 11232 ax-pre-lttrn 11233 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-om 7877 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 |
This theorem is referenced by: fimaxre2 12211 0ram2 17023 0ramcl 17025 prmgaplem3 17055 ballotlemfc0 34326 ballotlemfcc 34327 filbcmb 37441 |
Copyright terms: Public domain | W3C validator |