| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimaxre | Structured version Visualization version GIF version | ||
| Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Steven Nguyen, 3-Jun-2023.) |
| Ref | Expression |
|---|---|
| fimaxre | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso 11261 | . . . 4 ⊢ < Or ℝ | |
| 2 | soss 5569 | . . . 4 ⊢ (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴)) | |
| 3 | 1, 2 | mpi 20 | . . 3 ⊢ (𝐴 ⊆ ℝ → < Or 𝐴) |
| 4 | fimaxg 9241 | . . 3 ⊢ (( < Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) | |
| 5 | 3, 4 | syl3an1 1163 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) |
| 6 | ssel2 3944 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) | |
| 7 | 6 | adantrl 716 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ℝ) |
| 8 | ssel2 3944 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | |
| 9 | 8 | adantrr 717 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℝ) |
| 10 | 7, 9 | leloed 11324 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦 ≤ 𝑥 ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
| 11 | orcom 870 | . . . . . . . . . 10 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦)) | |
| 12 | equcom 2018 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 13 | 12 | orbi2i 912 | . . . . . . . . . 10 ⊢ ((𝑦 < 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) |
| 14 | 11, 13 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
| 16 | neor 3018 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) | |
| 17 | 16 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥))) |
| 18 | 10, 15, 17 | 3bitr2d 307 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦 ≤ 𝑥 ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥))) |
| 19 | 18 | biimprd 248 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → 𝑦 ≤ 𝑥)) |
| 20 | 19 | anassrs 467 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → 𝑦 ≤ 𝑥)) |
| 21 | 20 | ralimdva 3146 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
| 22 | 21 | reximdva 3147 | . . 3 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
| 23 | 22 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
| 24 | 5, 23 | mpd 15 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 Or wor 5548 Fincfn 8921 ℝcr 11074 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: fimaxre2 12135 0ram2 16999 0ramcl 17001 prmgaplem3 17031 ballotlemfc0 34491 ballotlemfcc 34492 filbcmb 37741 |
| Copyright terms: Public domain | W3C validator |