MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre Structured version   Visualization version   GIF version

Theorem fimaxre 12239
Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Steven Nguyen, 3-Jun-2023.)
Assertion
Ref Expression
fimaxre ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre
StepHypRef Expression
1 ltso 11370 . . . 4 < Or ℝ
2 soss 5628 . . . 4 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
31, 2mpi 20 . . 3 (𝐴 ⊆ ℝ → < Or 𝐴)
4 fimaxg 9351 . . 3 (( < Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥))
53, 4syl3an1 1163 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥))
6 ssel2 4003 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
76adantrl 715 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → 𝑦 ∈ ℝ)
8 ssel2 4003 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
98adantrr 716 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 ∈ ℝ)
107, 9leloed 11433 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
11 orcom 869 . . . . . . . . . 10 ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑦 < 𝑥𝑥 = 𝑦))
12 equcom 2017 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
1312orbi2i 911 . . . . . . . . . 10 ((𝑦 < 𝑥𝑥 = 𝑦) ↔ (𝑦 < 𝑥𝑦 = 𝑥))
1411, 13bitri 275 . . . . . . . . 9 ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑦 < 𝑥𝑦 = 𝑥))
1514a1i 11 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
16 neor 3040 . . . . . . . . 9 ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑥𝑦𝑦 < 𝑥))
1716a1i 11 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑥𝑦𝑦 < 𝑥)))
1810, 15, 173bitr2d 307 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → (𝑦𝑥 ↔ (𝑥𝑦𝑦 < 𝑥)))
1918biimprd 248 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑦𝑦 < 𝑥) → 𝑦𝑥))
2019anassrs 467 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑦 < 𝑥) → 𝑦𝑥))
2120ralimdva 3173 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦 < 𝑥) → ∀𝑦𝐴 𝑦𝑥))
2221reximdva 3174 . . 3 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
23223ad2ant1 1133 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
245, 23mpd 15 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   class class class wbr 5166   Or wor 5606  Fincfn 9003  cr 11183   < clt 11324  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330
This theorem is referenced by:  fimaxre2  12240  0ram2  17068  0ramcl  17070  prmgaplem3  17100  ballotlemfc0  34457  ballotlemfcc  34458  filbcmb  37700
  Copyright terms: Public domain W3C validator