![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimaxre | Structured version Visualization version GIF version |
Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Steven Nguyen, 3-Jun-2023.) |
Ref | Expression |
---|---|
fimaxre | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 10521 | . . . 4 ⊢ < Or ℝ | |
2 | soss 5345 | . . . 4 ⊢ (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴)) | |
3 | 1, 2 | mpi 20 | . . 3 ⊢ (𝐴 ⊆ ℝ → < Or 𝐴) |
4 | fimaxg 8560 | . . 3 ⊢ (( < Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) | |
5 | 3, 4 | syl3an1 1143 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) |
6 | ssel2 3854 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) | |
7 | 6 | adantrl 703 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ℝ) |
8 | ssel2 3854 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | |
9 | 8 | adantrr 704 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℝ) |
10 | 7, 9 | leloed 10583 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦 ≤ 𝑥 ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
11 | orcom 856 | . . . . . . . . . 10 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦)) | |
12 | equcom 1975 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
13 | 12 | orbi2i 896 | . . . . . . . . . 10 ⊢ ((𝑦 < 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) |
14 | 11, 13 | bitri 267 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
16 | neor 3060 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) | |
17 | 16 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥))) |
18 | 10, 15, 17 | 3bitr2d 299 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦 ≤ 𝑥 ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥))) |
19 | 18 | biimprd 240 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → 𝑦 ≤ 𝑥)) |
20 | 19 | anassrs 460 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → 𝑦 ≤ 𝑥)) |
21 | 20 | ralimdva 3128 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
22 | 21 | reximdva 3220 | . . 3 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
23 | 22 | 3ad2ant1 1113 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
24 | 5, 23 | mpd 15 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 833 ∧ w3a 1068 ∈ wcel 2050 ≠ wne 2968 ∀wral 3089 ∃wrex 3090 ⊆ wss 3830 ∅c0 4179 class class class wbr 4929 Or wor 5325 Fincfn 8306 ℝcr 10334 < clt 10474 ≤ cle 10475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-pre-lttri 10409 ax-pre-lttrn 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-om 7397 df-1o 7905 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 |
This theorem is referenced by: fimaxre2 11387 fiminreOLD 11391 0ram2 16213 0ramcl 16215 prmgaplem3 16245 ballotlemfc0 31393 ballotlemfcc 31394 filbcmb 34454 |
Copyright terms: Public domain | W3C validator |