MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre Structured version   Visualization version   GIF version

Theorem fimaxre 11999
Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Steven Nguyen, 3-Jun-2023.)
Assertion
Ref Expression
fimaxre ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre
StepHypRef Expression
1 ltso 11135 . . . 4 < Or ℝ
2 soss 5541 . . . 4 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
31, 2mpi 20 . . 3 (𝐴 ⊆ ℝ → < Or 𝐴)
4 fimaxg 9134 . . 3 (( < Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥))
53, 4syl3an1 1162 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥))
6 ssel2 3926 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
76adantrl 713 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → 𝑦 ∈ ℝ)
8 ssel2 3926 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
98adantrr 714 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 ∈ ℝ)
107, 9leloed 11198 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
11 orcom 867 . . . . . . . . . 10 ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑦 < 𝑥𝑥 = 𝑦))
12 equcom 2020 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
1312orbi2i 910 . . . . . . . . . 10 ((𝑦 < 𝑥𝑥 = 𝑦) ↔ (𝑦 < 𝑥𝑦 = 𝑥))
1411, 13bitri 274 . . . . . . . . 9 ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑦 < 𝑥𝑦 = 𝑥))
1514a1i 11 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
16 neor 3034 . . . . . . . . 9 ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑥𝑦𝑦 < 𝑥))
1716a1i 11 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑥𝑦𝑦 < 𝑥)))
1810, 15, 173bitr2d 306 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → (𝑦𝑥 ↔ (𝑥𝑦𝑦 < 𝑥)))
1918biimprd 247 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑦𝑦 < 𝑥) → 𝑦𝑥))
2019anassrs 468 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑦 < 𝑥) → 𝑦𝑥))
2120ralimdva 3161 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦 < 𝑥) → ∀𝑦𝐴 𝑦𝑥))
2221reximdva 3162 . . 3 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
23223ad2ant1 1132 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
245, 23mpd 15 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086  wcel 2105  wne 2941  wral 3062  wrex 3071  wss 3897  c0 4267   class class class wbr 5087   Or wor 5520  Fincfn 8783  cr 10950   < clt 11089  cle 11090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-resscn 11008  ax-pre-lttri 11025  ax-pre-lttrn 11026
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-om 7760  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095
This theorem is referenced by:  fimaxre2  12000  0ram2  16799  0ramcl  16801  prmgaplem3  16831  ballotlemfc0  32599  ballotlemfcc  32600  filbcmb  35970
  Copyright terms: Public domain W3C validator