Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fimaxre | Structured version Visualization version GIF version |
Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Steven Nguyen, 3-Jun-2023.) |
Ref | Expression |
---|---|
fimaxre | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 11135 | . . . 4 ⊢ < Or ℝ | |
2 | soss 5541 | . . . 4 ⊢ (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴)) | |
3 | 1, 2 | mpi 20 | . . 3 ⊢ (𝐴 ⊆ ℝ → < Or 𝐴) |
4 | fimaxg 9134 | . . 3 ⊢ (( < Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) | |
5 | 3, 4 | syl3an1 1162 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) |
6 | ssel2 3926 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) | |
7 | 6 | adantrl 713 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑦 ∈ ℝ) |
8 | ssel2 3926 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) | |
9 | 8 | adantrr 714 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∈ ℝ) |
10 | 7, 9 | leloed 11198 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦 ≤ 𝑥 ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
11 | orcom 867 | . . . . . . . . . 10 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑥 = 𝑦)) | |
12 | equcom 2020 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
13 | 12 | orbi2i 910 | . . . . . . . . . 10 ⊢ ((𝑦 < 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) |
14 | 11, 13 | bitri 274 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥)) |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑦 < 𝑥 ∨ 𝑦 = 𝑥))) |
16 | neor 3034 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥)) | |
17 | 16 | a1i 11 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥))) |
18 | 10, 15, 17 | 3bitr2d 306 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑦 ≤ 𝑥 ↔ (𝑥 ≠ 𝑦 → 𝑦 < 𝑥))) |
19 | 18 | biimprd 247 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → 𝑦 ≤ 𝑥)) |
20 | 19 | anassrs 468 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → 𝑦 ≤ 𝑥)) |
21 | 20 | ralimdva 3161 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
22 | 21 | reximdva 3162 | . . 3 ⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
23 | 22 | 3ad2ant1 1132 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦 < 𝑥) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
24 | 5, 23 | mpd 15 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 ∈ wcel 2105 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ⊆ wss 3897 ∅c0 4267 class class class wbr 5087 Or wor 5520 Fincfn 8783 ℝcr 10950 < clt 11089 ≤ cle 11090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-resscn 11008 ax-pre-lttri 11025 ax-pre-lttrn 11026 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-om 7760 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 |
This theorem is referenced by: fimaxre2 12000 0ram2 16799 0ramcl 16801 prmgaplem3 16831 ballotlemfc0 32599 ballotlemfcc 32600 filbcmb 35970 |
Copyright terms: Public domain | W3C validator |