Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre Structured version   Visualization version   GIF version

Theorem fimaxre 11588
 Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Steven Nguyen, 3-Jun-2023.)
Assertion
Ref Expression
fimaxre ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre
StepHypRef Expression
1 ltso 10725 . . . 4 < Or ℝ
2 soss 5460 . . . 4 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
31, 2mpi 20 . . 3 (𝐴 ⊆ ℝ → < Or 𝐴)
4 fimaxg 8764 . . 3 (( < Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥))
53, 4syl3an1 1160 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥))
6 ssel2 3911 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
76adantrl 715 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → 𝑦 ∈ ℝ)
8 ssel2 3911 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
98adantrr 716 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 ∈ ℝ)
107, 9leloed 10787 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
11 orcom 867 . . . . . . . . . 10 ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑦 < 𝑥𝑥 = 𝑦))
12 equcom 2025 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
1312orbi2i 910 . . . . . . . . . 10 ((𝑦 < 𝑥𝑥 = 𝑦) ↔ (𝑦 < 𝑥𝑦 = 𝑥))
1411, 13bitri 278 . . . . . . . . 9 ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑦 < 𝑥𝑦 = 𝑥))
1514a1i 11 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
16 neor 3078 . . . . . . . . 9 ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑥𝑦𝑦 < 𝑥))
1716a1i 11 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑥𝑦𝑦 < 𝑥)))
1810, 15, 173bitr2d 310 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → (𝑦𝑥 ↔ (𝑥𝑦𝑦 < 𝑥)))
1918biimprd 251 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑦𝑦 < 𝑥) → 𝑦𝑥))
2019anassrs 471 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑦 < 𝑥) → 𝑦𝑥))
2120ralimdva 3144 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦 < 𝑥) → ∀𝑦𝐴 𝑦𝑥))
2221reximdva 3233 . . 3 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
23223ad2ant1 1130 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
245, 23mpd 15 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107   ⊆ wss 3882  ∅c0 4245   class class class wbr 5033   Or wor 5440  Fincfn 8507  ℝcr 10540   < clt 10679   ≤ cle 10680 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-resscn 10598  ax-pre-lttri 10615  ax-pre-lttrn 10616 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-om 7571  df-1o 8100  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685 This theorem is referenced by:  fimaxre2  11589  0ram2  16364  0ramcl  16366  prmgaplem3  16396  ballotlemfc0  31923  ballotlemfcc  31924  filbcmb  35245
 Copyright terms: Public domain W3C validator