| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ord0eln0 | Structured version Visualization version GIF version | ||
| Description: A nonempty ordinal contains the empty set. Lemma 1.10 of [Schloeder] p. 2. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| ord0eln0 | ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4288 | . 2 ⊢ (∅ ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 2 | ord0 6360 | . . . 4 ⊢ Ord ∅ | |
| 3 | noel 4285 | . . . . 5 ⊢ ¬ 𝐴 ∈ ∅ | |
| 4 | ordtri2 6341 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord ∅) → (𝐴 ∈ ∅ ↔ ¬ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))) | |
| 5 | 4 | con2bid 354 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord ∅) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ ¬ 𝐴 ∈ ∅)) |
| 6 | 3, 5 | mpbiri 258 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| 7 | 2, 6 | mpan2 691 | . . 3 ⊢ (Ord 𝐴 → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| 8 | neor 3020 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ (𝐴 ≠ ∅ → ∅ ∈ 𝐴)) | |
| 9 | 7, 8 | sylib 218 | . 2 ⊢ (Ord 𝐴 → (𝐴 ≠ ∅ → ∅ ∈ 𝐴)) |
| 10 | 1, 9 | impbid2 226 | 1 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4280 Ord word 6305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 |
| This theorem is referenced by: on0eln0 6363 dflim2 6364 0elsuc 7765 ordge1n0 8409 omwordi 8486 omass 8495 nnmord 8547 nnmwordi 8550 wemapwe 9587 elni2 10768 cuteq1 27778 bnj529 34753 fissorduni 35101 ordeldif1o 43301 ordne0gt0 43302 dflim7 43314 |
| Copyright terms: Public domain | W3C validator |