MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord0eln0 Structured version   Visualization version   GIF version

Theorem ord0eln0 6450
Description: A nonempty ordinal contains the empty set. Lemma 1.10 of [Schloeder] p. 2. (Contributed by NM, 25-Nov-1995.)
Assertion
Ref Expression
ord0eln0 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))

Proof of Theorem ord0eln0
StepHypRef Expression
1 ne0i 4364 . 2 (∅ ∈ 𝐴𝐴 ≠ ∅)
2 ord0 6448 . . . 4 Ord ∅
3 noel 4360 . . . . 5 ¬ 𝐴 ∈ ∅
4 ordtri2 6430 . . . . . 6 ((Ord 𝐴 ∧ Ord ∅) → (𝐴 ∈ ∅ ↔ ¬ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
54con2bid 354 . . . . 5 ((Ord 𝐴 ∧ Ord ∅) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ ¬ 𝐴 ∈ ∅))
63, 5mpbiri 258 . . . 4 ((Ord 𝐴 ∧ Ord ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
72, 6mpan2 690 . . 3 (Ord 𝐴 → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
8 neor 3040 . . 3 ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ (𝐴 ≠ ∅ → ∅ ∈ 𝐴))
97, 8sylib 218 . 2 (Ord 𝐴 → (𝐴 ≠ ∅ → ∅ ∈ 𝐴))
101, 9impbid2 226 1 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  c0 4352  Ord word 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398
This theorem is referenced by:  on0eln0  6451  dflim2  6452  0ellim  6458  0elsuc  7871  ordge1n0  8550  omwordi  8627  omass  8636  nnmord  8688  nnmwordi  8691  wemapwe  9766  elni2  10946  cuteq1  27896  bnj529  34717  ordeldif1o  43222  ordne0gt0  43223  dflim7  43235
  Copyright terms: Public domain W3C validator