MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord0eln0 Structured version   Visualization version   GIF version

Theorem ord0eln0 6362
Description: A nonempty ordinal contains the empty set. Lemma 1.10 of [Schloeder] p. 2. (Contributed by NM, 25-Nov-1995.)
Assertion
Ref Expression
ord0eln0 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))

Proof of Theorem ord0eln0
StepHypRef Expression
1 ne0i 4288 . 2 (∅ ∈ 𝐴𝐴 ≠ ∅)
2 ord0 6360 . . . 4 Ord ∅
3 noel 4285 . . . . 5 ¬ 𝐴 ∈ ∅
4 ordtri2 6341 . . . . . 6 ((Ord 𝐴 ∧ Ord ∅) → (𝐴 ∈ ∅ ↔ ¬ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
54con2bid 354 . . . . 5 ((Ord 𝐴 ∧ Ord ∅) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ ¬ 𝐴 ∈ ∅))
63, 5mpbiri 258 . . . 4 ((Ord 𝐴 ∧ Ord ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
72, 6mpan2 691 . . 3 (Ord 𝐴 → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
8 neor 3020 . . 3 ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ (𝐴 ≠ ∅ → ∅ ∈ 𝐴))
97, 8sylib 218 . 2 (Ord 𝐴 → (𝐴 ≠ ∅ → ∅ ∈ 𝐴))
101, 9impbid2 226 1 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  c0 4280  Ord word 6305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309
This theorem is referenced by:  on0eln0  6363  dflim2  6364  0elsuc  7765  ordge1n0  8409  omwordi  8486  omass  8495  nnmord  8547  nnmwordi  8550  wemapwe  9587  elni2  10768  cuteq1  27778  bnj529  34753  fissorduni  35101  ordeldif1o  43301  ordne0gt0  43302  dflim7  43314
  Copyright terms: Public domain W3C validator