Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ord0eln0 | Structured version Visualization version GIF version |
Description: A nonempty ordinal contains the empty set. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
ord0eln0 | ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4281 | . 2 ⊢ (∅ ∈ 𝐴 → 𝐴 ≠ ∅) | |
2 | ord0 6354 | . . . 4 ⊢ Ord ∅ | |
3 | noel 4277 | . . . . 5 ⊢ ¬ 𝐴 ∈ ∅ | |
4 | ordtri2 6337 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord ∅) → (𝐴 ∈ ∅ ↔ ¬ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))) | |
5 | 4 | con2bid 354 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord ∅) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ ¬ 𝐴 ∈ ∅)) |
6 | 3, 5 | mpbiri 257 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
7 | 2, 6 | mpan2 688 | . . 3 ⊢ (Ord 𝐴 → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
8 | neor 3033 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ (𝐴 ≠ ∅ → ∅ ∈ 𝐴)) | |
9 | 7, 8 | sylib 217 | . 2 ⊢ (Ord 𝐴 → (𝐴 ≠ ∅ → ∅ ∈ 𝐴)) |
10 | 1, 9 | impbid2 225 | 1 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∅c0 4269 Ord word 6301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-tr 5210 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-ord 6305 |
This theorem is referenced by: on0eln0 6357 dflim2 6358 0ellim 6364 0elsuc 7748 ordge1n0 8395 omwordi 8473 omass 8482 nnmord 8534 nnmwordi 8537 wemapwe 9554 elni2 10734 bnj529 33020 |
Copyright terms: Public domain | W3C validator |