| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ord0eln0 | Structured version Visualization version GIF version | ||
| Description: A nonempty ordinal contains the empty set. Lemma 1.10 of [Schloeder] p. 2. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| ord0eln0 | ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4300 | . 2 ⊢ (∅ ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 2 | ord0 6374 | . . . 4 ⊢ Ord ∅ | |
| 3 | noel 4297 | . . . . 5 ⊢ ¬ 𝐴 ∈ ∅ | |
| 4 | ordtri2 6355 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord ∅) → (𝐴 ∈ ∅ ↔ ¬ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))) | |
| 5 | 4 | con2bid 354 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord ∅) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ ¬ 𝐴 ∈ ∅)) |
| 6 | 3, 5 | mpbiri 258 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| 7 | 2, 6 | mpan2 691 | . . 3 ⊢ (Ord 𝐴 → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| 8 | neor 3017 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ (𝐴 ≠ ∅ → ∅ ∈ 𝐴)) | |
| 9 | 7, 8 | sylib 218 | . 2 ⊢ (Ord 𝐴 → (𝐴 ≠ ∅ → ∅ ∈ 𝐴)) |
| 10 | 1, 9 | impbid2 226 | 1 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 Ord word 6319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 |
| This theorem is referenced by: on0eln0 6377 dflim2 6378 0elsuc 7790 ordge1n0 8435 omwordi 8512 omass 8521 nnmord 8573 nnmwordi 8576 wemapwe 9626 elni2 10806 cuteq1 27722 bnj529 34704 ordeldif1o 43222 ordne0gt0 43223 dflim7 43235 |
| Copyright terms: Public domain | W3C validator |