MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord0eln0 Structured version   Visualization version   GIF version

Theorem ord0eln0 6083
Description: A nonempty ordinal contains the empty set. (Contributed by NM, 25-Nov-1995.)
Assertion
Ref Expression
ord0eln0 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))

Proof of Theorem ord0eln0
StepHypRef Expression
1 ne0i 4186 . 2 (∅ ∈ 𝐴𝐴 ≠ ∅)
2 ord0 6081 . . . 4 Ord ∅
3 noel 4183 . . . . 5 ¬ 𝐴 ∈ ∅
4 ordtri2 6064 . . . . . 6 ((Ord 𝐴 ∧ Ord ∅) → (𝐴 ∈ ∅ ↔ ¬ (𝐴 = ∅ ∨ ∅ ∈ 𝐴)))
54con2bid 347 . . . . 5 ((Ord 𝐴 ∧ Ord ∅) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ ¬ 𝐴 ∈ ∅))
63, 5mpbiri 250 . . . 4 ((Ord 𝐴 ∧ Ord ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
72, 6mpan2 678 . . 3 (Ord 𝐴 → (𝐴 = ∅ ∨ ∅ ∈ 𝐴))
8 neor 3059 . . 3 ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ (𝐴 ≠ ∅ → ∅ ∈ 𝐴))
97, 8sylib 210 . 2 (Ord 𝐴 → (𝐴 ≠ ∅ → ∅ ∈ 𝐴))
101, 9impbid2 218 1 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wcel 2050  wne 2967  c0 4178  Ord word 6028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-tr 5031  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-ord 6032
This theorem is referenced by:  on0eln0  6084  dflim2  6085  0ellim  6091  0elsuc  7366  ordge1n0  7925  omwordi  7998  omass  8007  nnmord  8059  nnmwordi  8062  wemapwe  8954  elni2  10097  bnj529  31666
  Copyright terms: Public domain W3C validator