| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ord0eln0 | Structured version Visualization version GIF version | ||
| Description: A nonempty ordinal contains the empty set. Lemma 1.10 of [Schloeder] p. 2. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| ord0eln0 | ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4321 | . 2 ⊢ (∅ ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 2 | ord0 6411 | . . . 4 ⊢ Ord ∅ | |
| 3 | noel 4318 | . . . . 5 ⊢ ¬ 𝐴 ∈ ∅ | |
| 4 | ordtri2 6392 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord ∅) → (𝐴 ∈ ∅ ↔ ¬ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))) | |
| 5 | 4 | con2bid 354 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord ∅) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ ¬ 𝐴 ∈ ∅)) |
| 6 | 3, 5 | mpbiri 258 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| 7 | 2, 6 | mpan2 691 | . . 3 ⊢ (Ord 𝐴 → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
| 8 | neor 3025 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ (𝐴 ≠ ∅ → ∅ ∈ 𝐴)) | |
| 9 | 7, 8 | sylib 218 | . 2 ⊢ (Ord 𝐴 → (𝐴 ≠ ∅ → ∅ ∈ 𝐴)) |
| 10 | 1, 9 | impbid2 226 | 1 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 Ord word 6356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 |
| This theorem is referenced by: on0eln0 6414 dflim2 6415 0ellim 6421 0elsuc 7834 ordge1n0 8511 omwordi 8588 omass 8597 nnmord 8649 nnmwordi 8652 wemapwe 9716 elni2 10896 cuteq1 27803 bnj529 34777 ordeldif1o 43251 ordne0gt0 43252 dflim7 43264 |
| Copyright terms: Public domain | W3C validator |