Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ord0eln0 | Structured version Visualization version GIF version |
Description: A nonempty ordinal contains the empty set. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
ord0eln0 | ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4265 | . 2 ⊢ (∅ ∈ 𝐴 → 𝐴 ≠ ∅) | |
2 | ord0 6303 | . . . 4 ⊢ Ord ∅ | |
3 | noel 4261 | . . . . 5 ⊢ ¬ 𝐴 ∈ ∅ | |
4 | ordtri2 6286 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord ∅) → (𝐴 ∈ ∅ ↔ ¬ (𝐴 = ∅ ∨ ∅ ∈ 𝐴))) | |
5 | 4 | con2bid 354 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord ∅) → ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ ¬ 𝐴 ∈ ∅)) |
6 | 3, 5 | mpbiri 257 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord ∅) → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
7 | 2, 6 | mpan2 687 | . . 3 ⊢ (Ord 𝐴 → (𝐴 = ∅ ∨ ∅ ∈ 𝐴)) |
8 | neor 3035 | . . 3 ⊢ ((𝐴 = ∅ ∨ ∅ ∈ 𝐴) ↔ (𝐴 ≠ ∅ → ∅ ∈ 𝐴)) | |
9 | 7, 8 | sylib 217 | . 2 ⊢ (Ord 𝐴 → (𝐴 ≠ ∅ → ∅ ∈ 𝐴)) |
10 | 1, 9 | impbid2 225 | 1 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 |
This theorem is referenced by: on0eln0 6306 dflim2 6307 0ellim 6313 0elsuc 7657 ordge1n0 8290 omwordi 8364 omass 8373 nnmord 8425 nnmwordi 8428 wemapwe 9385 elni2 10564 bnj529 32621 |
Copyright terms: Public domain | W3C validator |