MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiota1 Structured version   Visualization version   GIF version

Theorem nfiota1 6444
Description: Bound-variable hypothesis builder for the class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfiota1 𝑥(℩𝑥𝜑)

Proof of Theorem nfiota1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 6443 . 2 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
2 nfaba1 2903 . . 3 𝑥{𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
32nfuni 4865 . 2 𝑥 {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
41, 3nfcxfr 2893 1 𝑥(℩𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1539  {cab 2711  wnfc 2880   cuni 4858  cio 6440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-v 3439  df-ss 3915  df-sn 4576  df-uni 4859  df-iota 6442
This theorem is referenced by:  iota2df  6473  sniota  6477  opabiota  6910  nfriota1  7316  nfriotadw  7317  nfriotad  7320  erovlem  8743  nosupbnd2  27656  noinfbnd2  27671  bnj1366  34862
  Copyright terms: Public domain W3C validator