| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiota1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfiota1 | ⊢ Ⅎ𝑥(℩𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 6465 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
| 2 | nfaba1 2899 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
| 3 | 2 | nfuni 4878 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
| 4 | 1, 3 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(℩𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 {cab 2707 Ⅎwnfc 2876 ∪ cuni 4871 ℩cio 6462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-v 3449 df-ss 3931 df-sn 4590 df-uni 4872 df-iota 6464 |
| This theorem is referenced by: iota2df 6498 sniota 6502 opabiota 6943 nfriota1 7351 nfriotadw 7352 nfriotad 7355 erovlem 8786 nosupbnd2 27628 noinfbnd2 27643 bnj1366 34819 |
| Copyright terms: Public domain | W3C validator |