Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiota1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfiota1 | ⊢ Ⅎ𝑥(℩𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 6392 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
2 | nfaba1 2915 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
3 | 2 | nfuni 4846 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
4 | 1, 3 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥(℩𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 {cab 2715 Ⅎwnfc 2887 ∪ cuni 4839 ℩cio 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-sn 4562 df-uni 4840 df-iota 6391 |
This theorem is referenced by: iota2df 6420 sniota 6424 opabiota 6851 nfriota1 7239 nfriotadw 7240 nfriotad 7244 erovlem 8602 bnj1366 32809 nosupbnd2 33919 noinfbnd2 33934 |
Copyright terms: Public domain | W3C validator |