![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiota1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfiota1 | ⊢ Ⅎ𝑥(℩𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 6496 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
2 | nfaba1 2911 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
3 | 2 | nfuni 4915 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
4 | 1, 3 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥(℩𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1539 {cab 2709 Ⅎwnfc 2883 ∪ cuni 4908 ℩cio 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-v 3476 df-in 3955 df-ss 3965 df-sn 4629 df-uni 4909 df-iota 6495 |
This theorem is referenced by: iota2df 6530 sniota 6534 opabiota 6974 nfriota1 7374 nfriotadw 7375 nfriotad 7379 erovlem 8809 nosupbnd2 27443 noinfbnd2 27458 bnj1366 34126 |
Copyright terms: Public domain | W3C validator |