MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiota1 Structured version   Visualization version   GIF version

Theorem nfiota1 6378
Description: Bound-variable hypothesis builder for the class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfiota1 𝑥(℩𝑥𝜑)

Proof of Theorem nfiota1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 6377 . 2 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
2 nfaba1 2914 . . 3 𝑥{𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
32nfuni 4843 . 2 𝑥 {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
41, 3nfcxfr 2904 1 𝑥(℩𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537  {cab 2715  wnfc 2886   cuni 4836  cio 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-sn 4559  df-uni 4837  df-iota 6376
This theorem is referenced by:  iota2df  6405  sniota  6409  opabiota  6833  nfriota1  7219  nfriotadw  7220  nfriotad  7224  erovlem  8560  bnj1366  32709  nosupbnd2  33846  noinfbnd2  33861
  Copyright terms: Public domain W3C validator