| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiota1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfiota1 | ⊢ Ⅎ𝑥(℩𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 6443 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
| 2 | nfaba1 2903 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
| 3 | 2 | nfuni 4865 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
| 4 | 1, 3 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥(℩𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 {cab 2711 Ⅎwnfc 2880 ∪ cuni 4858 ℩cio 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-v 3439 df-ss 3915 df-sn 4576 df-uni 4859 df-iota 6442 |
| This theorem is referenced by: iota2df 6473 sniota 6477 opabiota 6910 nfriota1 7316 nfriotadw 7317 nfriotad 7320 erovlem 8743 nosupbnd2 27656 noinfbnd2 27671 bnj1366 34862 |
| Copyright terms: Public domain | W3C validator |