![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiota1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfiota1 | ⊢ Ⅎ𝑥(℩𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 6091 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
2 | nfaba1 2975 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} | |
3 | 2 | nfuni 4666 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
4 | 1, 3 | nfcxfr 2967 | 1 ⊢ Ⅎ𝑥(℩𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∀wal 1654 {cab 2811 Ⅎwnfc 2956 ∪ cuni 4660 ℩cio 6088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-sn 4400 df-uni 4661 df-iota 6090 |
This theorem is referenced by: iota2df 6114 sniota 6117 opabiota 6512 nfriota1 6878 nfriotad 6879 erovlem 8114 bnj1366 31442 nosupbnd2 32396 |
Copyright terms: Public domain | W3C validator |