MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiota1 Structured version   Visualization version   GIF version

Theorem nfiota1 6486
Description: Bound-variable hypothesis builder for the class. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfiota1 𝑥(℩𝑥𝜑)

Proof of Theorem nfiota1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 6485 . 2 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
2 nfaba1 2906 . . 3 𝑥{𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
32nfuni 4890 . 2 𝑥 {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
41, 3nfcxfr 2896 1 𝑥(℩𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538  {cab 2713  wnfc 2883   cuni 4883  cio 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-v 3461  df-ss 3943  df-sn 4602  df-uni 4884  df-iota 6484
This theorem is referenced by:  iota2df  6518  sniota  6522  opabiota  6961  nfriota1  7369  nfriotadw  7370  nfriotad  7373  erovlem  8827  nosupbnd2  27680  noinfbnd2  27695  bnj1366  34860
  Copyright terms: Public domain W3C validator