Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimincfltioc Structured version   Visualization version   GIF version

Theorem pimincfltioc 46371
Description: Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimincfltioc.x 𝑥𝜑
pimincfltioc.h 𝑦𝜑
pimincfltioc.a (𝜑𝐴 ⊆ ℝ)
pimincfltioc.f (𝜑𝐹:𝐴⟶ℝ*)
pimincfltioc.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
pimincfltioc.r (𝜑𝑅 ∈ ℝ*)
pimincfltioc.y 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
pimincfltioc.c 𝑆 = sup(𝑌, ℝ*, < )
pimincfltioc.e (𝜑𝑆𝑌)
pimincfltioc.d 𝐼 = (-∞(,]𝑆)
Assertion
Ref Expression
pimincfltioc (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem pimincfltioc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pimincfltioc.y . . . . . . 7 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
2 ssrab2 4074 . . . . . . 7 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅} ⊆ 𝐴
31, 2eqsstri 4014 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimincfltioc.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3990 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimincfltioc.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimincfltioc.e . . . 4 (𝜑𝑆𝑌)
9 pimincfltioc.d . . . 4 𝐼 = (-∞(,]𝑆)
106, 7, 8, 9ressiocsup 45206 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 4232 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimincfltioc.x . . . 4 𝑥𝜑
13 elinel2 4195 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 pimincfltioc.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
1615adantr 479 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
1716, 14ffvelcdmd 7089 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
183, 8sselid 3977 . . . . . . . . . 10 (𝜑𝑆𝐴)
1915, 18ffvelcdmd 7089 . . . . . . . . 9 (𝜑 → (𝐹𝑆) ∈ ℝ*)
2019adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ∈ ℝ*)
21 pimincfltioc.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
2221adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
23 eleq1w 2809 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧 ∈ (𝐼𝐴) ↔ 𝑥 ∈ (𝐼𝐴)))
2423anbi2d 628 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝜑𝑧 ∈ (𝐼𝐴)) ↔ (𝜑𝑥 ∈ (𝐼𝐴))))
25 fveq2 6891 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
2625breq1d 5154 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝑧) ≤ (𝐹𝑆) ↔ (𝐹𝑥) ≤ (𝐹𝑆)))
2724, 26imbi12d 343 . . . . . . . . 9 (𝑧 = 𝑥 → (((𝜑𝑧 ∈ (𝐼𝐴)) → (𝐹𝑧) ≤ (𝐹𝑆)) ↔ ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ≤ (𝐹𝑆))))
28 nfv 1910 . . . . . . . . . . 11 𝑥 𝑧 ∈ (𝐼𝐴)
2912, 28nfan 1895 . . . . . . . . . 10 𝑥(𝜑𝑧 ∈ (𝐼𝐴))
30 pimincfltioc.h . . . . . . . . . . 11 𝑦𝜑
31 nfv 1910 . . . . . . . . . . 11 𝑦 𝑧 ∈ (𝐼𝐴)
3230, 31nfan 1895 . . . . . . . . . 10 𝑦(𝜑𝑧 ∈ (𝐼𝐴))
33 pimincfltioc.i . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
3433adantr 479 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
35 elinel2 4195 . . . . . . . . . . 11 (𝑧 ∈ (𝐼𝐴) → 𝑧𝐴)
3635adantl 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧𝐴)
3718adantr 479 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑆𝐴)
38 mnfxr 11310 . . . . . . . . . . . 12 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
40 ressxr 11297 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
416, 8sseldd 3980 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ)
4240, 41sselid 3977 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ*)
4342adantr 479 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
44 elinel1 4194 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐼𝐴) → 𝑧𝐼)
4544, 9eleqtrdi 2836 . . . . . . . . . . . 12 (𝑧 ∈ (𝐼𝐴) → 𝑧 ∈ (-∞(,]𝑆))
4645adantl 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧 ∈ (-∞(,]𝑆))
47 iocleub 45155 . . . . . . . . . . 11 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑧 ∈ (-∞(,]𝑆)) → 𝑧𝑆)
4839, 43, 46, 47syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧𝑆)
4929, 32, 34, 36, 37, 48dmrelrnrel 44867 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐼𝐴)) → (𝐹𝑧) ≤ (𝐹𝑆))
5027, 49chvarvv 1995 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ≤ (𝐹𝑆))
51 fveq2 6891 . . . . . . . . . . . . 13 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹𝑆))
5251breq1d 5154 . . . . . . . . . . . 12 (𝑥 = 𝑆 → ((𝐹𝑥) < 𝑅 ↔ (𝐹𝑆) < 𝑅))
5352, 1elrab2 3684 . . . . . . . . . . 11 (𝑆𝑌 ↔ (𝑆𝐴 ∧ (𝐹𝑆) < 𝑅))
548, 53sylib 217 . . . . . . . . . 10 (𝜑 → (𝑆𝐴 ∧ (𝐹𝑆) < 𝑅))
5554simprd 494 . . . . . . . . 9 (𝜑 → (𝐹𝑆) < 𝑅)
5655adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) < 𝑅)
5717, 20, 22, 50, 56xrlelttrd 13185 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) < 𝑅)
5814, 57jca 510 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴 ∧ (𝐹𝑥) < 𝑅))
591reqabi 3443 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴 ∧ (𝐹𝑥) < 𝑅))
6058, 59sylibr 233 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
6160ex 411 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
6212, 61ralrimi 3245 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
6328nfci 2879 . . . 4 𝑥(𝐼𝐴)
64 nfrab1 3440 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
651, 64nfcxfr 2890 . . . 4 𝑥𝑌
6663, 65dfss3f 3971 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
6762, 66sylibr 233 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
6811, 67eqssd 3997 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wnf 1778  wcel 2099  wral 3051  {crab 3420  cin 3946  wss 3947   class class class wbr 5144  wf 6540  cfv 6544  (class class class)co 7414  supcsup 9474  cr 11146  -∞cmnf 11285  *cxr 11286   < clt 11287  cle 11288  (,]cioc 13371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-po 5585  df-so 5586  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9476  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-ioc 13375
This theorem is referenced by:  incsmflem  46396
  Copyright terms: Public domain W3C validator