Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimincfltioc Structured version   Visualization version   GIF version

Theorem pimincfltioc 44204
Description: Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimincfltioc.x 𝑥𝜑
pimincfltioc.h 𝑦𝜑
pimincfltioc.a (𝜑𝐴 ⊆ ℝ)
pimincfltioc.f (𝜑𝐹:𝐴⟶ℝ*)
pimincfltioc.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
pimincfltioc.r (𝜑𝑅 ∈ ℝ*)
pimincfltioc.y 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
pimincfltioc.c 𝑆 = sup(𝑌, ℝ*, < )
pimincfltioc.e (𝜑𝑆𝑌)
pimincfltioc.d 𝐼 = (-∞(,]𝑆)
Assertion
Ref Expression
pimincfltioc (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem pimincfltioc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pimincfltioc.y . . . . . . 7 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
2 ssrab2 4017 . . . . . . 7 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅} ⊆ 𝐴
31, 2eqsstri 3959 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimincfltioc.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3935 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimincfltioc.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimincfltioc.e . . . 4 (𝜑𝑆𝑌)
9 pimincfltioc.d . . . 4 𝐼 = (-∞(,]𝑆)
106, 7, 8, 9ressiocsup 43046 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 4171 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimincfltioc.x . . . 4 𝑥𝜑
13 elinel2 4134 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 pimincfltioc.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
1615adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
1716, 14ffvelrnd 6956 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
183, 8sselid 3923 . . . . . . . . . 10 (𝜑𝑆𝐴)
1915, 18ffvelrnd 6956 . . . . . . . . 9 (𝜑 → (𝐹𝑆) ∈ ℝ*)
2019adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ∈ ℝ*)
21 pimincfltioc.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
2221adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
23 eleq1w 2822 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧 ∈ (𝐼𝐴) ↔ 𝑥 ∈ (𝐼𝐴)))
2423anbi2d 628 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝜑𝑧 ∈ (𝐼𝐴)) ↔ (𝜑𝑥 ∈ (𝐼𝐴))))
25 fveq2 6768 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
2625breq1d 5088 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝑧) ≤ (𝐹𝑆) ↔ (𝐹𝑥) ≤ (𝐹𝑆)))
2724, 26imbi12d 344 . . . . . . . . 9 (𝑧 = 𝑥 → (((𝜑𝑧 ∈ (𝐼𝐴)) → (𝐹𝑧) ≤ (𝐹𝑆)) ↔ ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ≤ (𝐹𝑆))))
28 nfv 1920 . . . . . . . . . . 11 𝑥 𝑧 ∈ (𝐼𝐴)
2912, 28nfan 1905 . . . . . . . . . 10 𝑥(𝜑𝑧 ∈ (𝐼𝐴))
30 pimincfltioc.h . . . . . . . . . . 11 𝑦𝜑
31 nfv 1920 . . . . . . . . . . 11 𝑦 𝑧 ∈ (𝐼𝐴)
3230, 31nfan 1905 . . . . . . . . . 10 𝑦(𝜑𝑧 ∈ (𝐼𝐴))
33 pimincfltioc.i . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
3433adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
35 elinel2 4134 . . . . . . . . . . 11 (𝑧 ∈ (𝐼𝐴) → 𝑧𝐴)
3635adantl 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧𝐴)
3718adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑆𝐴)
38 mnfxr 11016 . . . . . . . . . . . 12 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
40 ressxr 11003 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
416, 8sseldd 3926 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ)
4240, 41sselid 3923 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ*)
4342adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
44 elinel1 4133 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐼𝐴) → 𝑧𝐼)
4544, 9eleqtrdi 2850 . . . . . . . . . . . 12 (𝑧 ∈ (𝐼𝐴) → 𝑧 ∈ (-∞(,]𝑆))
4645adantl 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧 ∈ (-∞(,]𝑆))
47 iocleub 42995 . . . . . . . . . . 11 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑧 ∈ (-∞(,]𝑆)) → 𝑧𝑆)
4839, 43, 46, 47syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧𝑆)
4929, 32, 34, 36, 37, 48dmrelrnrel 42718 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐼𝐴)) → (𝐹𝑧) ≤ (𝐹𝑆))
5027, 49chvarvv 2005 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ≤ (𝐹𝑆))
51 fveq2 6768 . . . . . . . . . . . . 13 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹𝑆))
5251breq1d 5088 . . . . . . . . . . . 12 (𝑥 = 𝑆 → ((𝐹𝑥) < 𝑅 ↔ (𝐹𝑆) < 𝑅))
5352, 1elrab2 3628 . . . . . . . . . . 11 (𝑆𝑌 ↔ (𝑆𝐴 ∧ (𝐹𝑆) < 𝑅))
548, 53sylib 217 . . . . . . . . . 10 (𝜑 → (𝑆𝐴 ∧ (𝐹𝑆) < 𝑅))
5554simprd 495 . . . . . . . . 9 (𝜑 → (𝐹𝑆) < 𝑅)
5655adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) < 𝑅)
5717, 20, 22, 50, 56xrlelttrd 12876 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) < 𝑅)
5814, 57jca 511 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴 ∧ (𝐹𝑥) < 𝑅))
591rabeq2i 3420 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴 ∧ (𝐹𝑥) < 𝑅))
6058, 59sylibr 233 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
6160ex 412 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
6212, 61ralrimi 3141 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
6328nfci 2891 . . . 4 𝑥(𝐼𝐴)
64 nfrab1 3315 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
651, 64nfcxfr 2906 . . . 4 𝑥𝑌
6663, 65dfss3f 3916 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
6762, 66sylibr 233 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
6811, 67eqssd 3942 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1789  wcel 2109  wral 3065  {crab 3069  cin 3890  wss 3891   class class class wbr 5078  wf 6426  cfv 6430  (class class class)co 7268  supcsup 9160  cr 10854  -∞cmnf 10991  *cxr 10992   < clt 10993  cle 10994  (,]cioc 13062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-ioc 13066
This theorem is referenced by:  incsmflem  44228
  Copyright terms: Public domain W3C validator