Step | Hyp | Ref
| Expression |
1 | | pimincfltioc.y |
. . . . . . 7
⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} |
2 | | ssrab2 4019 |
. . . . . . 7
⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} ⊆ 𝐴 |
3 | 1, 2 | eqsstri 3960 |
. . . . . 6
⊢ 𝑌 ⊆ 𝐴 |
4 | 3 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝐴) |
5 | | pimincfltioc.a |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
6 | 4, 5 | sstrd 3936 |
. . . 4
⊢ (𝜑 → 𝑌 ⊆ ℝ) |
7 | | pimincfltioc.c |
. . . 4
⊢ 𝑆 = sup(𝑌, ℝ*, <
) |
8 | | pimincfltioc.e |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑌) |
9 | | pimincfltioc.d |
. . . 4
⊢ 𝐼 = (-∞(,]𝑆) |
10 | 6, 7, 8, 9 | ressiocsup 43141 |
. . 3
⊢ (𝜑 → 𝑌 ⊆ 𝐼) |
11 | 10, 4 | ssind 4172 |
. 2
⊢ (𝜑 → 𝑌 ⊆ (𝐼 ∩ 𝐴)) |
12 | | pimincfltioc.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
13 | | elinel2 4136 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐼 ∩ 𝐴) → 𝑥 ∈ 𝐴) |
14 | 13 | adantl 483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
15 | | pimincfltioc.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
16 | 15 | adantr 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∩ 𝐴)) → 𝐹:𝐴⟶ℝ*) |
17 | 16, 14 | ffvelcdmd 6994 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∩ 𝐴)) → (𝐹‘𝑥) ∈
ℝ*) |
18 | 3, 8 | sselid 3924 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
19 | 15, 18 | ffvelcdmd 6994 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑆) ∈
ℝ*) |
20 | 19 | adantr 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∩ 𝐴)) → (𝐹‘𝑆) ∈
ℝ*) |
21 | | pimincfltioc.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈
ℝ*) |
22 | 21 | adantr 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∩ 𝐴)) → 𝑅 ∈
ℝ*) |
23 | | eleq1w 2819 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (𝑧 ∈ (𝐼 ∩ 𝐴) ↔ 𝑥 ∈ (𝐼 ∩ 𝐴))) |
24 | 23 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → ((𝜑 ∧ 𝑧 ∈ (𝐼 ∩ 𝐴)) ↔ (𝜑 ∧ 𝑥 ∈ (𝐼 ∩ 𝐴)))) |
25 | | fveq2 6804 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) |
26 | 25 | breq1d 5091 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) ≤ (𝐹‘𝑆) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑆))) |
27 | 24, 26 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (((𝜑 ∧ 𝑧 ∈ (𝐼 ∩ 𝐴)) → (𝐹‘𝑧) ≤ (𝐹‘𝑆)) ↔ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∩ 𝐴)) → (𝐹‘𝑥) ≤ (𝐹‘𝑆)))) |
28 | | nfv 1915 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑧 ∈ (𝐼 ∩ 𝐴) |
29 | 12, 28 | nfan 1900 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝜑 ∧ 𝑧 ∈ (𝐼 ∩ 𝐴)) |
30 | | pimincfltioc.h |
. . . . . . . . . . 11
⊢
Ⅎ𝑦𝜑 |
31 | | nfv 1915 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦 𝑧 ∈ (𝐼 ∩ 𝐴) |
32 | 30, 31 | nfan 1900 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝜑 ∧ 𝑧 ∈ (𝐼 ∩ 𝐴)) |
33 | | pimincfltioc.i |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
34 | 33 | adantr 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∩ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
35 | | elinel2 4136 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐼 ∩ 𝐴) → 𝑧 ∈ 𝐴) |
36 | 35 | adantl 483 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∩ 𝐴)) → 𝑧 ∈ 𝐴) |
37 | 18 | adantr 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∩ 𝐴)) → 𝑆 ∈ 𝐴) |
38 | | mnfxr 11078 |
. . . . . . . . . . . 12
⊢ -∞
∈ ℝ* |
39 | 38 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∩ 𝐴)) → -∞ ∈
ℝ*) |
40 | | ressxr 11065 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℝ* |
41 | 6, 8 | sseldd 3927 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ ℝ) |
42 | 40, 41 | sselid 3924 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈
ℝ*) |
43 | 42 | adantr 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∩ 𝐴)) → 𝑆 ∈
ℝ*) |
44 | | elinel1 4135 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝐼 ∩ 𝐴) → 𝑧 ∈ 𝐼) |
45 | 44, 9 | eleqtrdi 2847 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝐼 ∩ 𝐴) → 𝑧 ∈ (-∞(,]𝑆)) |
46 | 45 | adantl 483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∩ 𝐴)) → 𝑧 ∈ (-∞(,]𝑆)) |
47 | | iocleub 43090 |
. . . . . . . . . . 11
⊢
((-∞ ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ 𝑧 ∈ (-∞(,]𝑆)) → 𝑧 ≤ 𝑆) |
48 | 39, 43, 46, 47 | syl3anc 1371 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∩ 𝐴)) → 𝑧 ≤ 𝑆) |
49 | 29, 32, 34, 36, 37, 48 | dmrelrnrel 42810 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐼 ∩ 𝐴)) → (𝐹‘𝑧) ≤ (𝐹‘𝑆)) |
50 | 27, 49 | chvarvv 2000 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∩ 𝐴)) → (𝐹‘𝑥) ≤ (𝐹‘𝑆)) |
51 | | fveq2 6804 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑆 → (𝐹‘𝑥) = (𝐹‘𝑆)) |
52 | 51 | breq1d 5091 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑆 → ((𝐹‘𝑥) < 𝑅 ↔ (𝐹‘𝑆) < 𝑅)) |
53 | 52, 1 | elrab2 3632 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝑌 ↔ (𝑆 ∈ 𝐴 ∧ (𝐹‘𝑆) < 𝑅)) |
54 | 8, 53 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆 ∈ 𝐴 ∧ (𝐹‘𝑆) < 𝑅)) |
55 | 54 | simprd 497 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘𝑆) < 𝑅) |
56 | 55 | adantr 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∩ 𝐴)) → (𝐹‘𝑆) < 𝑅) |
57 | 17, 20, 22, 50, 56 | xrlelttrd 12940 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∩ 𝐴)) → (𝐹‘𝑥) < 𝑅) |
58 | 14, 57 | jca 513 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∩ 𝐴)) → (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) < 𝑅)) |
59 | 1 | rabeq2i 3429 |
. . . . . 6
⊢ (𝑥 ∈ 𝑌 ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) < 𝑅)) |
60 | 58, 59 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∩ 𝐴)) → 𝑥 ∈ 𝑌) |
61 | 60 | ex 414 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐼 ∩ 𝐴) → 𝑥 ∈ 𝑌)) |
62 | 12, 61 | ralrimi 3237 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝐼 ∩ 𝐴)𝑥 ∈ 𝑌) |
63 | 28 | nfci 2888 |
. . . 4
⊢
Ⅎ𝑥(𝐼 ∩ 𝐴) |
64 | | nfrab1 3329 |
. . . . 5
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} |
65 | 1, 64 | nfcxfr 2903 |
. . . 4
⊢
Ⅎ𝑥𝑌 |
66 | 63, 65 | dfss3f 3917 |
. . 3
⊢ ((𝐼 ∩ 𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼 ∩ 𝐴)𝑥 ∈ 𝑌) |
67 | 62, 66 | sylibr 233 |
. 2
⊢ (𝜑 → (𝐼 ∩ 𝐴) ⊆ 𝑌) |
68 | 11, 67 | eqssd 3943 |
1
⊢ (𝜑 → 𝑌 = (𝐼 ∩ 𝐴)) |