Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimincfltioc Structured version   Visualization version   GIF version

Theorem pimincfltioc 46819
Description: Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimincfltioc.x 𝑥𝜑
pimincfltioc.h 𝑦𝜑
pimincfltioc.a (𝜑𝐴 ⊆ ℝ)
pimincfltioc.f (𝜑𝐹:𝐴⟶ℝ*)
pimincfltioc.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
pimincfltioc.r (𝜑𝑅 ∈ ℝ*)
pimincfltioc.y 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
pimincfltioc.c 𝑆 = sup(𝑌, ℝ*, < )
pimincfltioc.e (𝜑𝑆𝑌)
pimincfltioc.d 𝐼 = (-∞(,]𝑆)
Assertion
Ref Expression
pimincfltioc (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem pimincfltioc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pimincfltioc.y . . . . . . 7 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
2 ssrab2 4029 . . . . . . 7 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅} ⊆ 𝐴
31, 2eqsstri 3976 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimincfltioc.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3940 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimincfltioc.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimincfltioc.e . . . 4 (𝜑𝑆𝑌)
9 pimincfltioc.d . . . 4 𝐼 = (-∞(,]𝑆)
106, 7, 8, 9ressiocsup 45659 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 4190 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimincfltioc.x . . . 4 𝑥𝜑
13 elinel2 4151 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 pimincfltioc.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
1615adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
1716, 14ffvelcdmd 7024 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
183, 8sselid 3927 . . . . . . . . . 10 (𝜑𝑆𝐴)
1915, 18ffvelcdmd 7024 . . . . . . . . 9 (𝜑 → (𝐹𝑆) ∈ ℝ*)
2019adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ∈ ℝ*)
21 pimincfltioc.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
2221adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
23 eleq1w 2814 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝑧 ∈ (𝐼𝐴) ↔ 𝑥 ∈ (𝐼𝐴)))
2423anbi2d 630 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝜑𝑧 ∈ (𝐼𝐴)) ↔ (𝜑𝑥 ∈ (𝐼𝐴))))
25 fveq2 6828 . . . . . . . . . . 11 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
2625breq1d 5103 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝑧) ≤ (𝐹𝑆) ↔ (𝐹𝑥) ≤ (𝐹𝑆)))
2724, 26imbi12d 344 . . . . . . . . 9 (𝑧 = 𝑥 → (((𝜑𝑧 ∈ (𝐼𝐴)) → (𝐹𝑧) ≤ (𝐹𝑆)) ↔ ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ≤ (𝐹𝑆))))
28 nfv 1915 . . . . . . . . . . 11 𝑥 𝑧 ∈ (𝐼𝐴)
2912, 28nfan 1900 . . . . . . . . . 10 𝑥(𝜑𝑧 ∈ (𝐼𝐴))
30 pimincfltioc.h . . . . . . . . . . 11 𝑦𝜑
31 nfv 1915 . . . . . . . . . . 11 𝑦 𝑧 ∈ (𝐼𝐴)
3230, 31nfan 1900 . . . . . . . . . 10 𝑦(𝜑𝑧 ∈ (𝐼𝐴))
33 pimincfltioc.i . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
3433adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
35 elinel2 4151 . . . . . . . . . . 11 (𝑧 ∈ (𝐼𝐴) → 𝑧𝐴)
3635adantl 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧𝐴)
3718adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑆𝐴)
38 mnfxr 11175 . . . . . . . . . . . 12 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
40 ressxr 11162 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
416, 8sseldd 3930 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ ℝ)
4240, 41sselid 3927 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ*)
4342adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
44 elinel1 4150 . . . . . . . . . . . . 13 (𝑧 ∈ (𝐼𝐴) → 𝑧𝐼)
4544, 9eleqtrdi 2841 . . . . . . . . . . . 12 (𝑧 ∈ (𝐼𝐴) → 𝑧 ∈ (-∞(,]𝑆))
4645adantl 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧 ∈ (-∞(,]𝑆))
47 iocleub 45608 . . . . . . . . . . 11 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑧 ∈ (-∞(,]𝑆)) → 𝑧𝑆)
4839, 43, 46, 47syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐼𝐴)) → 𝑧𝑆)
4929, 32, 34, 36, 37, 48dmrelrnrel 45328 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐼𝐴)) → (𝐹𝑧) ≤ (𝐹𝑆))
5027, 49chvarvv 1990 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ≤ (𝐹𝑆))
51 fveq2 6828 . . . . . . . . . . . . 13 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹𝑆))
5251breq1d 5103 . . . . . . . . . . . 12 (𝑥 = 𝑆 → ((𝐹𝑥) < 𝑅 ↔ (𝐹𝑆) < 𝑅))
5352, 1elrab2 3645 . . . . . . . . . . 11 (𝑆𝑌 ↔ (𝑆𝐴 ∧ (𝐹𝑆) < 𝑅))
548, 53sylib 218 . . . . . . . . . 10 (𝜑 → (𝑆𝐴 ∧ (𝐹𝑆) < 𝑅))
5554simprd 495 . . . . . . . . 9 (𝜑 → (𝐹𝑆) < 𝑅)
5655adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) < 𝑅)
5717, 20, 22, 50, 56xrlelttrd 13065 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) < 𝑅)
5814, 57jca 511 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴 ∧ (𝐹𝑥) < 𝑅))
591reqabi 3418 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴 ∧ (𝐹𝑥) < 𝑅))
6058, 59sylibr 234 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
6160ex 412 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
6212, 61ralrimi 3230 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
6328nfci 2882 . . . 4 𝑥(𝐼𝐴)
64 nfrab1 3415 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
651, 64nfcxfr 2892 . . . 4 𝑥𝑌
6663, 65dfss3f 3921 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
6762, 66sylibr 234 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
6811, 67eqssd 3947 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wral 3047  {crab 3395  cin 3896  wss 3897   class class class wbr 5093  wf 6483  cfv 6487  (class class class)co 7352  supcsup 9330  cr 11011  -∞cmnf 11150  *cxr 11151   < clt 11152  cle 11153  (,]cioc 13252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9332  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-ioc 13256
This theorem is referenced by:  incsmflem  46844
  Copyright terms: Public domain W3C validator