Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre3uzlem Structured version   Visualization version   GIF version

Theorem limsupre3uzlem 42377
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre3uzlem.1 𝑗𝐹
limsupre3uzlem.2 (𝜑𝑀 ∈ ℤ)
limsupre3uzlem.3 𝑍 = (ℤ𝑀)
limsupre3uzlem.4 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
limsupre3uzlem (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑀,𝑘   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑗)   𝑀(𝑥)

Proof of Theorem limsupre3uzlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limsupre3uzlem.1 . . 3 𝑗𝐹
2 limsupre3uzlem.3 . . . . 5 𝑍 = (ℤ𝑀)
3 uzssre 42033 . . . . 5 (ℤ𝑀) ⊆ ℝ
42, 3eqsstri 3949 . . . 4 𝑍 ⊆ ℝ
54a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
6 limsupre3uzlem.4 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
71, 5, 6limsupre3 42375 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))))
8 breq1 5033 . . . . . . . . . . 11 (𝑦 = 𝑘 → (𝑦𝑗𝑘𝑗))
98anbi1d 632 . . . . . . . . . 10 (𝑦 = 𝑘 → ((𝑦𝑗𝑥 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
109rexbidv 3256 . . . . . . . . 9 (𝑦 = 𝑘 → (∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
1110cbvralvw 3396 . . . . . . . 8 (∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1211biimpi 219 . . . . . . 7 (∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
13 nfra1 3183 . . . . . . . 8 𝑘𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗))
14 simpr 488 . . . . . . . . 9 ((∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑍) → 𝑘𝑍)
154, 14sseldi 3913 . . . . . . . . . 10 ((∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑍) → 𝑘 ∈ ℝ)
16 rspa 3171 . . . . . . . . . 10 ((∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ 𝑘 ∈ ℝ) → ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1715, 16syldan 594 . . . . . . . . 9 ((∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑍) → ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
18 nfv 1915 . . . . . . . . . . 11 𝑗 𝑘𝑍
19 nfre1 3265 . . . . . . . . . . 11 𝑗𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)
20 eqid 2798 . . . . . . . . . . . . . . 15 (ℤ𝑘) = (ℤ𝑘)
212eluzelz2 42040 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
22213ad2ant1 1130 . . . . . . . . . . . . . . 15 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑘 ∈ ℤ)
232eluzelz2 42040 . . . . . . . . . . . . . . . 16 (𝑗𝑍𝑗 ∈ ℤ)
24233ad2ant2 1131 . . . . . . . . . . . . . . 15 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑗 ∈ ℤ)
25 simp3 1135 . . . . . . . . . . . . . . 15 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑘𝑗)
2620, 22, 24, 25eluzd 42046 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑗 ∈ (ℤ𝑘))
27263adant3r 1178 . . . . . . . . . . . . 13 ((𝑘𝑍𝑗𝑍 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑗 ∈ (ℤ𝑘))
28 simp3r 1199 . . . . . . . . . . . . 13 ((𝑘𝑍𝑗𝑍 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
29 rspe 3263 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℤ𝑘) ∧ 𝑥 ≤ (𝐹𝑗)) → ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
3027, 28, 29syl2anc 587 . . . . . . . . . . . 12 ((𝑘𝑍𝑗𝑍 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
31303exp 1116 . . . . . . . . . . 11 (𝑘𝑍 → (𝑗𝑍 → ((𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))))
3218, 19, 31rexlimd 3276 . . . . . . . . . 10 (𝑘𝑍 → (∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
3332imp 410 . . . . . . . . 9 ((𝑘𝑍 ∧ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
3414, 17, 33syl2anc 587 . . . . . . . 8 ((∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑍) → ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
3513, 34ralrimia 41767 . . . . . . 7 (∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
3612, 35syl 17 . . . . . 6 (∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
3736a1i 11 . . . . 5 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
38 iftrue 4431 . . . . . . . . . . . . 13 (𝑀 ≤ (⌈‘𝑦) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) = (⌈‘𝑦))
3938adantl 485 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) = (⌈‘𝑦))
40 limsupre3uzlem.2 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℤ)
4140ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → 𝑀 ∈ ℤ)
42 ceilcl 13207 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (⌈‘𝑦) ∈ ℤ)
4342ad2antlr 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → (⌈‘𝑦) ∈ ℤ)
44 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → 𝑀 ≤ (⌈‘𝑦))
452, 41, 43, 44eluzd 42046 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → (⌈‘𝑦) ∈ 𝑍)
4639, 45eqeltrd 2890 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍)
47 iffalse 4434 . . . . . . . . . . . . . 14 𝑀 ≤ (⌈‘𝑦) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) = 𝑀)
4847adantl 485 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) = 𝑀)
4940, 2uzidd2 42053 . . . . . . . . . . . . . 14 (𝜑𝑀𝑍)
5049adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 ≤ (⌈‘𝑦)) → 𝑀𝑍)
5148, 50eqeltrd 2890 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍)
5251adantlr 714 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍)
5346, 52pm2.61dan 812 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍)
5453adantlr 714 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍)
55 simplr 768 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
56 fveq2 6645 . . . . . . . . . . 11 (𝑘 = if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) → (ℤ𝑘) = (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)))
5756rexeqdv 3365 . . . . . . . . . 10 (𝑘 = if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) → (∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∃𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))𝑥 ≤ (𝐹𝑗)))
5857rspcva 3569 . . . . . . . . 9 ((if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) → ∃𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))𝑥 ≤ (𝐹𝑗))
5954, 55, 58syl2anc 587 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ) → ∃𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))𝑥 ≤ (𝐹𝑗))
60 nfv 1915 . . . . . . . . . . 11 𝑗𝜑
6118nfci 2939 . . . . . . . . . . . 12 𝑗𝑍
6261, 19nfralw 3189 . . . . . . . . . . 11 𝑗𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)
6360, 62nfan 1900 . . . . . . . . . 10 𝑗(𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
64 nfv 1915 . . . . . . . . . 10 𝑗 𝑦 ∈ ℝ
6563, 64nfan 1900 . . . . . . . . 9 𝑗((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ)
66 nfre1 3265 . . . . . . . . 9 𝑗𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗))
6740ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑀 ∈ ℤ)
68 eluzelz 12241 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → 𝑗 ∈ ℤ)
6968adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑗 ∈ ℤ)
7067zred 12075 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑀 ∈ ℝ)
714, 53sseldi 3913 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ ℝ)
7271adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ ℝ)
7369zred 12075 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑗 ∈ ℝ)
744, 49sseldi 3913 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℝ)
7574adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ) → 𝑀 ∈ ℝ)
7642zred 12075 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ → (⌈‘𝑦) ∈ ℝ)
7776adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ) → (⌈‘𝑦) ∈ ℝ)
78 max1 12566 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℝ ∧ (⌈‘𝑦) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
7975, 77, 78syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
8079adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
81 eluzle 12244 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ≤ 𝑗)
8281adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ≤ 𝑗)
8370, 72, 73, 80, 82letrd 10786 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑀𝑗)
842, 67, 69, 83eluzd 42046 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑗𝑍)
85843adant3 1129 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑗𝑍)
86 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑦 ∈ ℝ)
87 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
88 ceilge 13209 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ → 𝑦 ≤ (⌈‘𝑦))
8988adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ) → 𝑦 ≤ (⌈‘𝑦))
90 max2 12568 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ (⌈‘𝑦) ∈ ℝ) → (⌈‘𝑦) ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
9175, 77, 90syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ) → (⌈‘𝑦) ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
9287, 77, 71, 89, 91letrd 10786 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ) → 𝑦 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
9392adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑦 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
9486, 72, 73, 93, 82letrd 10786 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑦𝑗)
95943adant3 1129 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑦𝑗)
96 simp3 1135 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
9795, 96jca 515 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝑦𝑗𝑥 ≤ (𝐹𝑗)))
98 rspe 3263 . . . . . . . . . . . 12 ((𝑗𝑍 ∧ (𝑦𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)))
9985, 97, 98syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹𝑗)) → ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)))
100993exp 1116 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → (𝑥 ≤ (𝐹𝑗) → ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)))))
101100adantlr 714 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ) → (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → (𝑥 ≤ (𝐹𝑗) → ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)))))
10265, 66, 101rexlimd 3276 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ) → (∃𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))𝑥 ≤ (𝐹𝑗) → ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗))))
10359, 102mpd 15 . . . . . . 7 (((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)))
104103ralrimiva 3149 . . . . . 6 ((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) → ∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)))
105104ex 416 . . . . 5 (𝜑 → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) → ∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗))))
10637, 105impbid 215 . . . 4 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
107106rexbidv 3256 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
10853adantr 484 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍)
10960, 64nfan 1900 . . . . . . . . 9 𝑗(𝜑𝑦 ∈ ℝ)
110 nfra1 3183 . . . . . . . . 9 𝑗𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)
111109, 110nfan 1900 . . . . . . . 8 𝑗((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))
11294adantlr 714 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑦𝑗)
113 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))
11484adantlr 714 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑗𝑍)
115 rspa 3171 . . . . . . . . . . 11 ((∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍) → (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))
116113, 114, 115syl2anc 587 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))
117112, 116mpd 15 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → (𝐹𝑗) ≤ 𝑥)
118117ex 416 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → (𝐹𝑗) ≤ 𝑥))
119111, 118ralrimi 3180 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))(𝐹𝑗) ≤ 𝑥)
12056raleqdv 3364 . . . . . . . 8 (𝑘 = if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) → (∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))(𝐹𝑗) ≤ 𝑥))
121120rspcev 3571 . . . . . . 7 ((if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))(𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
122108, 119, 121syl2anc 587 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
123122rexlimdva2 3246 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
1244sseli 3911 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℝ)
125124ad2antlr 726 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → 𝑘 ∈ ℝ)
126 nfra1 3183 . . . . . . . . . 10 𝑗𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥
12718, 126nfan 1900 . . . . . . . . 9 𝑗(𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
128 simp1r 1195 . . . . . . . . . . 11 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
129263adant1r 1174 . . . . . . . . . . 11 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → 𝑗 ∈ (ℤ𝑘))
130 rspa 3171 . . . . . . . . . . 11 ((∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ≤ 𝑥)
131128, 129, 130syl2anc 587 . . . . . . . . . 10 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
1321313exp 1116 . . . . . . . . 9 ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → (𝑗𝑍 → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
133127, 132ralrimi 3180 . . . . . . . 8 ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
134133adantll 713 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1358rspceaimv 3576 . . . . . . 7 ((𝑘 ∈ ℝ ∧ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))
136125, 134, 135syl2anc 587 . . . . . 6 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))
137136rexlimdva2 3246 . . . . 5 (𝜑 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)))
138123, 137impbid 215 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
139138rexbidv 3256 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
140107, 139anbi12d 633 . 2 (𝜑 → ((∃𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
1417, 140bitrd 282 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wnfc 2936  wral 3106  wrex 3107  wss 3881  ifcif 4425   class class class wbr 5030  wf 6320  cfv 6324  cr 10525  *cxr 10663  cle 10665  cz 11969  cuz 12231  cceil 13156  lim supclsp 14819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-ico 12732  df-fl 13157  df-ceil 13158  df-limsup 14820
This theorem is referenced by:  limsupre3uz  42378  limsupreuz  42379
  Copyright terms: Public domain W3C validator