Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre3uzlem Structured version   Visualization version   GIF version

Theorem limsupre3uzlem 42841
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre3uzlem.1 𝑗𝐹
limsupre3uzlem.2 (𝜑𝑀 ∈ ℤ)
limsupre3uzlem.3 𝑍 = (ℤ𝑀)
limsupre3uzlem.4 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
limsupre3uzlem (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑀,𝑘   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐹(𝑗)   𝑀(𝑥)

Proof of Theorem limsupre3uzlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limsupre3uzlem.1 . . 3 𝑗𝐹
2 limsupre3uzlem.3 . . . . 5 𝑍 = (ℤ𝑀)
3 uzssre 12349 . . . . 5 (ℤ𝑀) ⊆ ℝ
42, 3eqsstri 3912 . . . 4 𝑍 ⊆ ℝ
54a1i 11 . . 3 (𝜑𝑍 ⊆ ℝ)
6 limsupre3uzlem.4 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
71, 5, 6limsupre3 42839 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))))
8 breq1 5034 . . . . . . . . . . 11 (𝑦 = 𝑘 → (𝑦𝑗𝑘𝑗))
98anbi1d 633 . . . . . . . . . 10 (𝑦 = 𝑘 → ((𝑦𝑗𝑥 ≤ (𝐹𝑗)) ↔ (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
109rexbidv 3208 . . . . . . . . 9 (𝑦 = 𝑘 → (∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
1110cbvralvw 3350 . . . . . . . 8 (∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1211biimpi 219 . . . . . . 7 (∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
13 nfra1 3132 . . . . . . . 8 𝑘𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗))
14 simpr 488 . . . . . . . . 9 ((∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑍) → 𝑘𝑍)
154, 14sseldi 3876 . . . . . . . . . 10 ((∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑍) → 𝑘 ∈ ℝ)
16 rspa 3120 . . . . . . . . . 10 ((∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ 𝑘 ∈ ℝ) → ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1715, 16syldan 594 . . . . . . . . 9 ((∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑍) → ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
18 nfv 1921 . . . . . . . . . . 11 𝑗 𝑘𝑍
19 nfre1 3217 . . . . . . . . . . 11 𝑗𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)
20 eqid 2739 . . . . . . . . . . . . . . 15 (ℤ𝑘) = (ℤ𝑘)
212eluzelz2 42504 . . . . . . . . . . . . . . . 16 (𝑘𝑍𝑘 ∈ ℤ)
22213ad2ant1 1134 . . . . . . . . . . . . . . 15 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑘 ∈ ℤ)
232eluzelz2 42504 . . . . . . . . . . . . . . . 16 (𝑗𝑍𝑗 ∈ ℤ)
24233ad2ant2 1135 . . . . . . . . . . . . . . 15 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑗 ∈ ℤ)
25 simp3 1139 . . . . . . . . . . . . . . 15 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑘𝑗)
2620, 22, 24, 25eluzd 42510 . . . . . . . . . . . . . 14 ((𝑘𝑍𝑗𝑍𝑘𝑗) → 𝑗 ∈ (ℤ𝑘))
27263adant3r 1182 . . . . . . . . . . . . 13 ((𝑘𝑍𝑗𝑍 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑗 ∈ (ℤ𝑘))
28 simp3r 1203 . . . . . . . . . . . . 13 ((𝑘𝑍𝑗𝑍 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝑥 ≤ (𝐹𝑗))
29 rspe 3215 . . . . . . . . . . . . 13 ((𝑗 ∈ (ℤ𝑘) ∧ 𝑥 ≤ (𝐹𝑗)) → ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
3027, 28, 29syl2anc 587 . . . . . . . . . . . 12 ((𝑘𝑍𝑗𝑍 ∧ (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
31303exp 1120 . . . . . . . . . . 11 (𝑘𝑍 → (𝑗𝑍 → ((𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))))
3218, 19, 31rexlimd 3228 . . . . . . . . . 10 (𝑘𝑍 → (∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
3332imp 410 . . . . . . . . 9 ((𝑘𝑍 ∧ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
3414, 17, 33syl2anc 587 . . . . . . . 8 ((∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑍) → ∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
3513, 34ralrimia 3397 . . . . . . 7 (∀𝑘 ∈ ℝ ∃𝑗𝑍 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
3612, 35syl 17 . . . . . 6 (∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
3736a1i 11 . . . . 5 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
38 iftrue 4421 . . . . . . . . . . . . 13 (𝑀 ≤ (⌈‘𝑦) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) = (⌈‘𝑦))
3938adantl 485 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) = (⌈‘𝑦))
40 limsupre3uzlem.2 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℤ)
4140ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → 𝑀 ∈ ℤ)
42 ceilcl 13306 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (⌈‘𝑦) ∈ ℤ)
4342ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → (⌈‘𝑦) ∈ ℤ)
44 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → 𝑀 ≤ (⌈‘𝑦))
452, 41, 43, 44eluzd 42510 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → (⌈‘𝑦) ∈ 𝑍)
4639, 45eqeltrd 2834 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍)
47 iffalse 4424 . . . . . . . . . . . . . 14 𝑀 ≤ (⌈‘𝑦) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) = 𝑀)
4847adantl 485 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) = 𝑀)
4940, 2uzidd2 42517 . . . . . . . . . . . . . 14 (𝜑𝑀𝑍)
5049adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝑀 ≤ (⌈‘𝑦)) → 𝑀𝑍)
5148, 50eqeltrd 2834 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍)
5251adantlr 715 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍)
5346, 52pm2.61dan 813 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍)
5453adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍)
55 simplr 769 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ) → ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
56 fveq2 6677 . . . . . . . . . . 11 (𝑘 = if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) → (ℤ𝑘) = (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)))
5756rexeqdv 3318 . . . . . . . . . 10 (𝑘 = if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) → (∃𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∃𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))𝑥 ≤ (𝐹𝑗)))
5857rspcva 3525 . . . . . . . . 9 ((if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) → ∃𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))𝑥 ≤ (𝐹𝑗))
5954, 55, 58syl2anc 587 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ) → ∃𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))𝑥 ≤ (𝐹𝑗))
60 nfv 1921 . . . . . . . . . . 11 𝑗𝜑
6118nfci 2883 . . . . . . . . . . . 12 𝑗𝑍
6261, 19nfralw 3139 . . . . . . . . . . 11 𝑗𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)
6360, 62nfan 1906 . . . . . . . . . 10 𝑗(𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
64 nfv 1921 . . . . . . . . . 10 𝑗 𝑦 ∈ ℝ
6563, 64nfan 1906 . . . . . . . . 9 𝑗((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ)
66 nfre1 3217 . . . . . . . . 9 𝑗𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗))
6740ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑀 ∈ ℤ)
68 eluzelz 12337 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → 𝑗 ∈ ℤ)
6968adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑗 ∈ ℤ)
7067zred 12171 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑀 ∈ ℝ)
714, 53sseldi 3876 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ ℝ)
7271adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ ℝ)
7369zred 12171 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑗 ∈ ℝ)
744, 49sseldi 3876 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℝ)
7574adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ) → 𝑀 ∈ ℝ)
7642zred 12171 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ → (⌈‘𝑦) ∈ ℝ)
7776adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ) → (⌈‘𝑦) ∈ ℝ)
78 max1 12664 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℝ ∧ (⌈‘𝑦) ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
7975, 77, 78syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
8079adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
81 eluzle 12340 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ≤ 𝑗)
8281adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ≤ 𝑗)
8370, 72, 73, 80, 82letrd 10878 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑀𝑗)
842, 67, 69, 83eluzd 42510 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑗𝑍)
85843adant3 1133 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑗𝑍)
86 simplr 769 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑦 ∈ ℝ)
87 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
88 ceilge 13308 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℝ → 𝑦 ≤ (⌈‘𝑦))
8988adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ) → 𝑦 ≤ (⌈‘𝑦))
90 max2 12666 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ (⌈‘𝑦) ∈ ℝ) → (⌈‘𝑦) ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
9175, 77, 90syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ) → (⌈‘𝑦) ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
9287, 77, 71, 89, 91letrd 10878 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ) → 𝑦 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
9392adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑦 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))
9486, 72, 73, 93, 82letrd 10878 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑦𝑗)
95943adant3 1133 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑦𝑗)
96 simp3 1139 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ≤ (𝐹𝑗))
9795, 96jca 515 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹𝑗)) → (𝑦𝑗𝑥 ≤ (𝐹𝑗)))
98 rspe 3215 . . . . . . . . . . . 12 ((𝑗𝑍 ∧ (𝑦𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)))
9985, 97, 98syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹𝑗)) → ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)))
100993exp 1120 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → (𝑥 ≤ (𝐹𝑗) → ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)))))
101100adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ) → (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → (𝑥 ≤ (𝐹𝑗) → ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)))))
10265, 66, 101rexlimd 3228 . . . . . . . 8 (((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ) → (∃𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))𝑥 ≤ (𝐹𝑗) → ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗))))
10359, 102mpd 15 . . . . . . 7 (((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)))
104103ralrimiva 3097 . . . . . 6 ((𝜑 ∧ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)) → ∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)))
105104ex 416 . . . . 5 (𝜑 → (∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) → ∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗))))
10637, 105impbid 215 . . . 4 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
107106rexbidv 3208 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
10853adantr 484 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍)
10960, 64nfan 1906 . . . . . . . . 9 𝑗(𝜑𝑦 ∈ ℝ)
110 nfra1 3132 . . . . . . . . 9 𝑗𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)
111109, 110nfan 1906 . . . . . . . 8 𝑗((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))
11294adantlr 715 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑦𝑗)
113 simplr 769 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))
11484adantlr 715 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑗𝑍)
115 rspa 3120 . . . . . . . . . . 11 ((∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍) → (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))
116113, 114, 115syl2anc 587 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))
117112, 116mpd 15 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) ∧ 𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → (𝐹𝑗) ≤ 𝑥)
118117ex 416 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) → (𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → (𝐹𝑗) ≤ 𝑥))
119111, 118ralrimi 3129 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))(𝐹𝑗) ≤ 𝑥)
12056raleqdv 3317 . . . . . . . 8 (𝑘 = if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) → (∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))(𝐹𝑗) ≤ 𝑥))
121120rspcev 3527 . . . . . . 7 ((if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))(𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
122108, 119, 121syl2anc 587 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
123122rexlimdva2 3198 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
1244sseli 3874 . . . . . . . 8 (𝑘𝑍𝑘 ∈ ℝ)
125124ad2antlr 727 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → 𝑘 ∈ ℝ)
126 nfra1 3132 . . . . . . . . . 10 𝑗𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥
12718, 126nfan 1906 . . . . . . . . 9 𝑗(𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
128 simp1r 1199 . . . . . . . . . . 11 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)
129263adant1r 1178 . . . . . . . . . . 11 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → 𝑗 ∈ (ℤ𝑘))
130 rspa 3120 . . . . . . . . . . 11 ((∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥𝑗 ∈ (ℤ𝑘)) → (𝐹𝑗) ≤ 𝑥)
131128, 129, 130syl2anc 587 . . . . . . . . . 10 (((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) ∧ 𝑗𝑍𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
1321313exp 1120 . . . . . . . . 9 ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → (𝑗𝑍 → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
133127, 132ralrimi 3129 . . . . . . . 8 ((𝑘𝑍 ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
134133adantll 714 . . . . . . 7 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1358rspceaimv 3532 . . . . . . 7 ((𝑘 ∈ ℝ ∧ ∀𝑗𝑍 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))
136125, 134, 135syl2anc 587 . . . . . 6 (((𝜑𝑘𝑍) ∧ ∀𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥))
137136rexlimdva2 3198 . . . . 5 (𝜑 → (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)))
138123, 137impbid 215 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
139138rexbidv 3208 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥))
140107, 139anbi12d 634 . 2 (𝜑 → ((∃𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∃𝑗𝑍 (𝑦𝑗𝑥 ≤ (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑗𝑍 (𝑦𝑗 → (𝐹𝑗) ≤ 𝑥)) ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
1417, 140bitrd 282 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)(𝐹𝑗) ≤ 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wnfc 2880  wral 3054  wrex 3055  wss 3844  ifcif 4415   class class class wbr 5031  wf 6336  cfv 6340  cr 10617  *cxr 10755  cle 10757  cz 12065  cuz 12327  cceil 13255  lim supclsp 14920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-sup 8982  df-inf 8983  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-nn 11720  df-n0 11980  df-z 12066  df-uz 12328  df-ico 12830  df-fl 13256  df-ceil 13257  df-limsup 14921
This theorem is referenced by:  limsupre3uz  42842  limsupreuz  42843
  Copyright terms: Public domain W3C validator