| Step | Hyp | Ref
| Expression |
| 1 | | limsupre3uzlem.1 |
. . 3
⊢
Ⅎ𝑗𝐹 |
| 2 | | limsupre3uzlem.3 |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 3 | | uzssre 12879 |
. . . . 5
⊢
(ℤ≥‘𝑀) ⊆ ℝ |
| 4 | 2, 3 | eqsstri 4010 |
. . . 4
⊢ 𝑍 ⊆
ℝ |
| 5 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑍 ⊆ ℝ) |
| 6 | | limsupre3uzlem.4 |
. . 3
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| 7 | 1, 5, 6 | limsupre3 45729 |
. 2
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑥 ∈ ℝ
∀𝑦 ∈ ℝ
∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)))) |
| 8 | | breq1 5127 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑘 → (𝑦 ≤ 𝑗 ↔ 𝑘 ≤ 𝑗)) |
| 9 | 8 | anbi1d 631 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑘 → ((𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
| 10 | 9 | rexbidv 3165 |
. . . . . . . . 9
⊢ (𝑦 = 𝑘 → (∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
| 11 | 10 | cbvralvw 3224 |
. . . . . . . 8
⊢
(∀𝑦 ∈
ℝ ∃𝑗 ∈
𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
| 12 | 11 | biimpi 216 |
. . . . . . 7
⊢
(∀𝑦 ∈
ℝ ∃𝑗 ∈
𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
| 13 | | nfra1 3270 |
. . . . . . . 8
⊢
Ⅎ𝑘∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) |
| 14 | | simpr 484 |
. . . . . . . . 9
⊢
((∀𝑘 ∈
ℝ ∃𝑗 ∈
𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) |
| 15 | 4, 14 | sselid 3961 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
ℝ ∃𝑗 ∈
𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ ℝ) |
| 16 | | rspa 3235 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
ℝ ∃𝑗 ∈
𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑘 ∈ ℝ) → ∃𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
| 17 | 15, 16 | syldan 591 |
. . . . . . . . 9
⊢
((∀𝑘 ∈
ℝ ∃𝑗 ∈
𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑘 ∈ 𝑍) → ∃𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
| 18 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗 𝑘 ∈ 𝑍 |
| 19 | | nfre1 3271 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗∃𝑗 ∈
(ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) |
| 20 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑘) = (ℤ≥‘𝑘) |
| 21 | 2 | eluzelz2 45397 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 22 | 21 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗) → 𝑘 ∈ ℤ) |
| 23 | 2 | eluzelz2 45397 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
| 24 | 23 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗) → 𝑗 ∈ ℤ) |
| 25 | | simp3 1138 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗) → 𝑘 ≤ 𝑗) |
| 26 | 20, 22, 24, 25 | eluzd 45403 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗) → 𝑗 ∈ (ℤ≥‘𝑘)) |
| 27 | 26 | 3adant3r 1182 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ 𝑍 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝑗 ∈ (ℤ≥‘𝑘)) |
| 28 | | simp3r 1203 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ 𝑍 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → 𝑥 ≤ (𝐹‘𝑗)) |
| 29 | | rspe 3236 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈
(ℤ≥‘𝑘) ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) |
| 30 | 27, 28, 29 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ 𝑍 ∧ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) |
| 31 | 30 | 3exp 1119 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑍 → (𝑗 ∈ 𝑍 → ((𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)))) |
| 32 | 18, 19, 31 | rexlimd 3253 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 → (∃𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗))) |
| 33 | 32 | imp 406 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝑍 ∧ ∃𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) |
| 34 | 14, 17, 33 | syl2anc 584 |
. . . . . . . 8
⊢
((∀𝑘 ∈
ℝ ∃𝑗 ∈
𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑘 ∈ 𝑍) → ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) |
| 35 | 13, 34 | ralrimia 3245 |
. . . . . . 7
⊢
(∀𝑘 ∈
ℝ ∃𝑗 ∈
𝑍 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) |
| 36 | 12, 35 | syl 17 |
. . . . . 6
⊢
(∀𝑦 ∈
ℝ ∃𝑗 ∈
𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) |
| 37 | 36 | a1i 11 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗))) |
| 38 | | iftrue 4511 |
. . . . . . . . . . . . 13
⊢ (𝑀 ≤ (⌈‘𝑦) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) = (⌈‘𝑦)) |
| 39 | 38 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) = (⌈‘𝑦)) |
| 40 | | limsupre3uzlem.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 41 | 40 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → 𝑀 ∈ ℤ) |
| 42 | | ceilcl 13864 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ →
(⌈‘𝑦) ∈
ℤ) |
| 43 | 42 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → (⌈‘𝑦) ∈ ℤ) |
| 44 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → 𝑀 ≤ (⌈‘𝑦)) |
| 45 | 2, 41, 43, 44 | eluzd 45403 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → (⌈‘𝑦) ∈ 𝑍) |
| 46 | 39, 45 | eqeltrd 2835 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍) |
| 47 | | iffalse 4514 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑀 ≤ (⌈‘𝑦) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) = 𝑀) |
| 48 | 47 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) = 𝑀) |
| 49 | 40, 2 | uzidd2 45410 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 50 | 49 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑀 ≤ (⌈‘𝑦)) → 𝑀 ∈ 𝑍) |
| 51 | 48, 50 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍) |
| 52 | 51 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ¬ 𝑀 ≤ (⌈‘𝑦)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍) |
| 53 | 46, 52 | pm2.61dan 812 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍) |
| 54 | 53 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑦 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍) |
| 55 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑦 ∈ ℝ) → ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) |
| 56 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑘 = if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) → (ℤ≥‘𝑘) =
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) |
| 57 | 56 | rexeqdv 3310 |
. . . . . . . . . 10
⊢ (𝑘 = if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) → (∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∃𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))𝑥 ≤ (𝐹‘𝑗))) |
| 58 | 57 | rspcva 3604 |
. . . . . . . . 9
⊢
((if(𝑀 ≤
(⌈‘𝑦),
(⌈‘𝑦), 𝑀) ∈ 𝑍 ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) → ∃𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))𝑥 ≤ (𝐹‘𝑗)) |
| 59 | 54, 55, 58 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑦 ∈ ℝ) → ∃𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))𝑥 ≤ (𝐹‘𝑗)) |
| 60 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗𝜑 |
| 61 | 18 | nfci 2887 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗𝑍 |
| 62 | 61, 19 | nfralw 3295 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) |
| 63 | 60, 62 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑗(𝜑 ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) |
| 64 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑗 𝑦 ∈ ℝ |
| 65 | 63, 64 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑗((𝜑 ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑦 ∈ ℝ) |
| 66 | | nfre1 3271 |
. . . . . . . . 9
⊢
Ⅎ𝑗∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) |
| 67 | 40 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑀 ∈ ℤ) |
| 68 | | eluzelz 12867 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → 𝑗 ∈ ℤ) |
| 69 | 68 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑗 ∈ ℤ) |
| 70 | 67 | zred 12702 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑀 ∈ ℝ) |
| 71 | 4, 53 | sselid 3961 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ ℝ) |
| 72 | 71 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ ℝ) |
| 73 | 69 | zred 12702 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑗 ∈ ℝ) |
| 74 | 4, 49 | sselid 3961 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 75 | 74 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑀 ∈ ℝ) |
| 76 | 42 | zred 12702 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℝ →
(⌈‘𝑦) ∈
ℝ) |
| 77 | 76 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (⌈‘𝑦) ∈
ℝ) |
| 78 | | max1 13206 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℝ ∧
(⌈‘𝑦) ∈
ℝ) → 𝑀 ≤
if(𝑀 ≤
(⌈‘𝑦),
(⌈‘𝑦), 𝑀)) |
| 79 | 75, 77, 78 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) |
| 80 | 79 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑀 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) |
| 81 | | eluzle 12870 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ≤ 𝑗) |
| 82 | 81 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ≤ 𝑗) |
| 83 | 70, 72, 73, 80, 82 | letrd 11397 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑀 ≤ 𝑗) |
| 84 | 2, 67, 69, 83 | eluzd 45403 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑗 ∈ 𝑍) |
| 85 | 84 | 3adant3 1132 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑗 ∈ 𝑍) |
| 86 | | simplr 768 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑦 ∈ ℝ) |
| 87 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) |
| 88 | | ceilge 13867 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℝ → 𝑦 ≤ (⌈‘𝑦)) |
| 89 | 88 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ≤ (⌈‘𝑦)) |
| 90 | | max2 13208 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℝ ∧
(⌈‘𝑦) ∈
ℝ) → (⌈‘𝑦) ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) |
| 91 | 75, 77, 90 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (⌈‘𝑦) ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) |
| 92 | 87, 77, 71, 89, 91 | letrd 11397 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) |
| 93 | 92 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑦 ≤ if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) |
| 94 | 86, 72, 73, 93, 82 | letrd 11397 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑦 ≤ 𝑗) |
| 95 | 94 | 3adant3 1132 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑦 ≤ 𝑗) |
| 96 | | simp3 1138 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → 𝑥 ≤ (𝐹‘𝑗)) |
| 97 | 95, 96 | jca 511 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
| 98 | | rspe 3236 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑍 ∧ (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) → ∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
| 99 | 85, 97, 98 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) ∧ 𝑥 ≤ (𝐹‘𝑗)) → ∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
| 100 | 99 | 3exp 1119 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → (𝑥 ≤ (𝐹‘𝑗) → ∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))))) |
| 101 | 100 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑦 ∈ ℝ) → (𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → (𝑥 ≤ (𝐹‘𝑗) → ∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))))) |
| 102 | 65, 66, 101 | rexlimd 3253 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑦 ∈ ℝ) → (∃𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))𝑥 ≤ (𝐹‘𝑗) → ∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
| 103 | 59, 102 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) ∧ 𝑦 ∈ ℝ) → ∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
| 104 | 103 | ralrimiva 3133 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗)) → ∀𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
| 105 | 104 | ex 412 |
. . . . 5
⊢ (𝜑 → (∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) → ∀𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
| 106 | 37, 105 | impbid 212 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗))) |
| 107 | 106 | rexbidv 3165 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗))) |
| 108 | 53 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) ∈ 𝑍) |
| 109 | 60, 64 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝜑 ∧ 𝑦 ∈ ℝ) |
| 110 | | nfra1 3270 |
. . . . . . . . 9
⊢
Ⅎ𝑗∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) |
| 111 | 109, 110 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑗((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 112 | 94 | adantlr 715 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑦 ≤ 𝑗) |
| 113 | | simplr 768 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 114 | 84 | adantlr 715 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → 𝑗 ∈ 𝑍) |
| 115 | | rspa 3235 |
. . . . . . . . . . 11
⊢
((∀𝑗 ∈
𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ∧ 𝑗 ∈ 𝑍) → (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 116 | 113, 114,
115 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 117 | 112, 116 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ∧ 𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))) → (𝐹‘𝑗) ≤ 𝑥) |
| 118 | 117 | ex 412 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → (𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀)) → (𝐹‘𝑗) ≤ 𝑥)) |
| 119 | 111, 118 | ralrimi 3244 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∀𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))(𝐹‘𝑗) ≤ 𝑥) |
| 120 | 56 | raleqdv 3309 |
. . . . . . . 8
⊢ (𝑘 = if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀) → (∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))(𝐹‘𝑗) ≤ 𝑥)) |
| 121 | 120 | rspcev 3606 |
. . . . . . 7
⊢
((if(𝑀 ≤
(⌈‘𝑦),
(⌈‘𝑦), 𝑀) ∈ 𝑍 ∧ ∀𝑗 ∈
(ℤ≥‘if(𝑀 ≤ (⌈‘𝑦), (⌈‘𝑦), 𝑀))(𝐹‘𝑗) ≤ 𝑥) → ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
| 122 | 108, 119,
121 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
| 123 | 122 | rexlimdva2 3144 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
| 124 | 4 | sseli 3959 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℝ) |
| 125 | 124 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) → 𝑘 ∈ ℝ) |
| 126 | | nfra1 3270 |
. . . . . . . . . 10
⊢
Ⅎ𝑗∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 |
| 127 | 18, 126 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝑘 ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
| 128 | | simp1r 1199 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗) → ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) |
| 129 | 26 | 3adant1r 1178 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗) → 𝑗 ∈ (ℤ≥‘𝑘)) |
| 130 | | rspa 3235 |
. . . . . . . . . . 11
⊢
((∀𝑗 ∈
(ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (𝐹‘𝑗) ≤ 𝑥) |
| 131 | 128, 129,
130 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) ∧ 𝑗 ∈ 𝑍 ∧ 𝑘 ≤ 𝑗) → (𝐹‘𝑗) ≤ 𝑥) |
| 132 | 131 | 3exp 1119 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) → (𝑗 ∈ 𝑍 → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
| 133 | 127, 132 | ralrimi 3244 |
. . . . . . . 8
⊢ ((𝑘 ∈ 𝑍 ∧ ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) → ∀𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 134 | 133 | adantll 714 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) → ∀𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 135 | 8 | rspceaimv 3612 |
. . . . . . 7
⊢ ((𝑘 ∈ ℝ ∧
∀𝑗 ∈ 𝑍 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 136 | 125, 134,
135 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍) ∧ ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 137 | 136 | rexlimdva2 3144 |
. . . . 5
⊢ (𝜑 → (∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
| 138 | 123, 137 | impbid 212 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
| 139 | 138 | rexbidv 3165 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥)) |
| 140 | 107, 139 | anbi12d 632 |
. 2
⊢ (𝜑 → ((∃𝑥 ∈ ℝ ∀𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝑦 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥))) |
| 141 | 7, 140 | bitrd 279 |
1
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑥 ∈ ℝ
∀𝑘 ∈ 𝑍 ∃𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(𝐹‘𝑗) ≤ 𝑥))) |