Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumfzf Structured version   Visualization version   GIF version

Theorem esumfzf 31004
Description: Formulating a partial extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.)
Hypothesis
Ref Expression
esumfzf.1 𝑘𝐹
Assertion
Ref Expression
esumfzf ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑁 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))
Distinct variable group:   𝑘,𝑁
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem esumfzf
Dummy variables 𝑖 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1874 . . . . . 6 𝑘 𝑖 = 1
2 oveq2 6990 . . . . . 6 (𝑖 = 1 → (1...𝑖) = (1...1))
31, 2esumeq1d 30970 . . . . 5 (𝑖 = 1 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...1)(𝐹𝑘))
4 fveq2 6504 . . . . 5 (𝑖 = 1 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘1))
53, 4eqeq12d 2795 . . . 4 (𝑖 = 1 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1)))
65imbi2d 333 . . 3 (𝑖 = 1 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1))))
7 nfv 1874 . . . . . 6 𝑘 𝑖 = 𝑛
8 oveq2 6990 . . . . . 6 (𝑖 = 𝑛 → (1...𝑖) = (1...𝑛))
97, 8esumeq1d 30970 . . . . 5 (𝑖 = 𝑛 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
10 fveq2 6504 . . . . 5 (𝑖 = 𝑛 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘𝑛))
119, 10eqeq12d 2795 . . . 4 (𝑖 = 𝑛 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)))
1211imbi2d 333 . . 3 (𝑖 = 𝑛 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))))
13 nfv 1874 . . . . . 6 𝑘 𝑖 = (𝑛 + 1)
14 oveq2 6990 . . . . . 6 (𝑖 = (𝑛 + 1) → (1...𝑖) = (1...(𝑛 + 1)))
1513, 14esumeq1d 30970 . . . . 5 (𝑖 = (𝑛 + 1) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
16 fveq2 6504 . . . . 5 (𝑖 = (𝑛 + 1) → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))
1715, 16eqeq12d 2795 . . . 4 (𝑖 = (𝑛 + 1) → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1))))
1817imbi2d 333 . . 3 (𝑖 = (𝑛 + 1) → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
19 nfv 1874 . . . . . 6 𝑘 𝑖 = 𝑁
20 oveq2 6990 . . . . . 6 (𝑖 = 𝑁 → (1...𝑖) = (1...𝑁))
2119, 20esumeq1d 30970 . . . . 5 (𝑖 = 𝑁 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘))
22 fveq2 6504 . . . . 5 (𝑖 = 𝑁 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘𝑁))
2321, 22eqeq12d 2795 . . . 4 (𝑖 = 𝑁 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)))
2423imbi2d 333 . . 3 (𝑖 = 𝑁 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))))
25 fveq2 6504 . . . . . 6 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
26 nfcv 2934 . . . . . 6 𝑥{1}
27 nfcv 2934 . . . . . 6 𝑘{1}
28 nfcv 2934 . . . . . 6 𝑥(𝐹𝑘)
29 esumfzf.1 . . . . . . 7 𝑘𝐹
30 nfcv 2934 . . . . . . 7 𝑘𝑥
3129, 30nffv 6514 . . . . . 6 𝑘(𝐹𝑥)
3225, 26, 27, 28, 31cbvesum 30977 . . . . 5 Σ*𝑘 ∈ {1} (𝐹𝑘) = Σ*𝑥 ∈ {1} (𝐹𝑥)
33 simpr 477 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 = 1) → 𝑥 = 1)
3433fveq2d 6508 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 = 1) → (𝐹𝑥) = (𝐹‘1))
35 1z 11831 . . . . . . 7 1 ∈ ℤ
3635a1i 11 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → 1 ∈ ℤ)
37 1nn 11458 . . . . . . 7 1 ∈ ℕ
38 ffvelrn 6680 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ (0[,]+∞))
3937, 38mpan2 679 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → (𝐹‘1) ∈ (0[,]+∞))
4034, 36, 39esumsn 31000 . . . . 5 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑥 ∈ {1} (𝐹𝑥) = (𝐹‘1))
4132, 40syl5eq 2828 . . . 4 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ {1} (𝐹𝑘) = (𝐹‘1))
42 fzsn 12771 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
4335, 42ax-mp 5 . . . . 5 (1...1) = {1}
44 esumeq1 30969 . . . . 5 ((1...1) = {1} → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = Σ*𝑘 ∈ {1} (𝐹𝑘))
4543, 44ax-mp 5 . . . 4 Σ*𝑘 ∈ (1...1)(𝐹𝑘) = Σ*𝑘 ∈ {1} (𝐹𝑘)
46 seq1 13203 . . . . 5 (1 ∈ ℤ → (seq1( +𝑒 , 𝐹)‘1) = (𝐹‘1))
4735, 46ax-mp 5 . . . 4 (seq1( +𝑒 , 𝐹)‘1) = (𝐹‘1)
4841, 45, 473eqtr4g 2841 . . 3 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1))
49 simpl 475 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝑛 ∈ ℕ)
50 nnuz 12101 . . . . . . . . 9 ℕ = (ℤ‘1)
5149, 50syl6eleq 2878 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝑛 ∈ (ℤ‘1))
52 seqp1 13205 . . . . . . . 8 (𝑛 ∈ (ℤ‘1) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
5351, 52syl 17 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
5453adantr 473 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
55 simpr 477 . . . . . . 7 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))
5655oveq1d 6997 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
57 nfv 1874 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
5857nfci 2921 . . . . . . . . . . 11 𝑘
59 nfcv 2934 . . . . . . . . . . 11 𝑘(0[,]+∞)
6029, 58, 59nff 6345 . . . . . . . . . 10 𝑘 𝐹:ℕ⟶(0[,]+∞)
6157, 60nfan 1863 . . . . . . . . 9 𝑘(𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
62 fzsuc 12776 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6351, 62syl 17 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6461, 63esumeq1d 30970 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = Σ*𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝐹𝑘))
65 nfcv 2934 . . . . . . . . 9 𝑘(1...𝑛)
66 nfcv 2934 . . . . . . . . 9 𝑘{(𝑛 + 1)}
67 ovexd 7016 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (1...𝑛) ∈ V)
68 snex 5192 . . . . . . . . . 10 {(𝑛 + 1)} ∈ V
6968a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → {(𝑛 + 1)} ∈ V)
70 fzp1disj 12788 . . . . . . . . . 10 ((1...𝑛) ∩ {(𝑛 + 1)}) = ∅
7170a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → ((1...𝑛) ∩ {(𝑛 + 1)}) = ∅)
72 simplr 757 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
73 fzssnn 12773 . . . . . . . . . . . 12 (1 ∈ ℕ → (1...𝑛) ⊆ ℕ)
7437, 73ax-mp 5 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
75 simpr 477 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
7674, 75sseldi 3858 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
7772, 76ffvelrnd 6683 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
78 simplr 757 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝐹:ℕ⟶(0[,]+∞))
79 simpr 477 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 ∈ {(𝑛 + 1)})
80 velsn 4460 . . . . . . . . . . . 12 (𝑘 ∈ {(𝑛 + 1)} ↔ 𝑘 = (𝑛 + 1))
8179, 80sylib 210 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 = (𝑛 + 1))
82 simpll 755 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑛 ∈ ℕ)
8382peano2nnd 11464 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → (𝑛 + 1) ∈ ℕ)
8481, 83eqeltrd 2868 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 ∈ ℕ)
8578, 84ffvelrnd 6683 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → (𝐹𝑘) ∈ (0[,]+∞))
8661, 65, 66, 67, 69, 71, 77, 85esumsplit 30988 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝐹𝑘) = (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘)))
87 nfcv 2934 . . . . . . . . . . 11 𝑥{(𝑛 + 1)}
8825, 87, 66, 28, 31cbvesum 30977 . . . . . . . . . 10 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘) = Σ*𝑥 ∈ {(𝑛 + 1)} (𝐹𝑥)
89 simpr 477 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑥 = (𝑛 + 1)) → 𝑥 = (𝑛 + 1))
9089fveq2d 6508 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑥 = (𝑛 + 1)) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
9149peano2nnd 11464 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (𝑛 + 1) ∈ ℕ)
92 simpr 477 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝐹:ℕ⟶(0[,]+∞))
9392, 91ffvelrnd 6683 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (𝐹‘(𝑛 + 1)) ∈ (0[,]+∞))
9490, 91, 93esumsn 31000 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑥 ∈ {(𝑛 + 1)} (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
9588, 94syl5eq 2828 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
9695oveq2d 6998 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘)) = (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))))
9764, 86, 963eqtrrd 2821 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
9897adantr 473 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
9954, 56, 983eqtr2rd 2823 . . . . 5 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))
10099exp31 412 . . . 4 (𝑛 ∈ ℕ → (𝐹:ℕ⟶(0[,]+∞) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
101100a2d 29 . . 3 (𝑛 ∈ ℕ → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
1026, 12, 18, 24, 48, 101nnind 11465 . 2 (𝑁 ∈ ℕ → (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)))
103102impcom 399 1 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑁 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  wnfc 2918  Vcvv 3417  cun 3829  cin 3830  wss 3831  c0 4181  {csn 4444  wf 6189  cfv 6193  (class class class)co 6982  0cc0 10341  1c1 10342   + caddc 10344  +∞cpnf 10477  cn 11445  cz 11799  cuz 12064   +𝑒 cxad 12328  [,]cicc 12563  ...cfz 12714  seqcseq 13190  Σ*cesum 30962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419  ax-addf 10420  ax-mulf 10421
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-iin 4800  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-om 7403  df-1st 7507  df-2nd 7508  df-supp 7640  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-2o 7912  df-oadd 7915  df-er 8095  df-map 8214  df-pm 8215  df-ixp 8266  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-fsupp 8635  df-fi 8676  df-sup 8707  df-inf 8708  df-oi 8775  df-card 9168  df-cda 9394  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-5 11512  df-6 11513  df-7 11514  df-8 11515  df-9 11516  df-n0 11714  df-z 11800  df-dec 11918  df-uz 12065  df-q 12169  df-rp 12211  df-xneg 12330  df-xadd 12331  df-xmul 12332  df-ioo 12564  df-ioc 12565  df-ico 12566  df-icc 12567  df-fz 12715  df-fzo 12856  df-fl 12983  df-mod 13059  df-seq 13191  df-exp 13251  df-fac 13455  df-bc 13484  df-hash 13512  df-shft 14293  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-limsup 14695  df-clim 14712  df-rlim 14713  df-sum 14910  df-ef 15287  df-sin 15289  df-cos 15290  df-pi 15292  df-struct 16347  df-ndx 16348  df-slot 16349  df-base 16351  df-sets 16352  df-ress 16353  df-plusg 16440  df-mulr 16441  df-starv 16442  df-sca 16443  df-vsca 16444  df-ip 16445  df-tset 16446  df-ple 16447  df-ds 16449  df-unif 16450  df-hom 16451  df-cco 16452  df-rest 16558  df-topn 16559  df-0g 16577  df-gsum 16578  df-topgen 16579  df-pt 16580  df-prds 16583  df-ordt 16636  df-xrs 16637  df-qtop 16642  df-imas 16643  df-xps 16645  df-mre 16727  df-mrc 16728  df-acs 16730  df-ps 17680  df-tsr 17681  df-plusf 17721  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-mhm 17815  df-submnd 17816  df-grp 17906  df-minusg 17907  df-sbg 17908  df-mulg 18024  df-subg 18072  df-cntz 18230  df-cmn 18680  df-abl 18681  df-mgp 18975  df-ur 18987  df-ring 19034  df-cring 19035  df-subrg 19268  df-abv 19322  df-lmod 19370  df-scaf 19371  df-sra 19678  df-rgmod 19679  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-fbas 20259  df-fg 20260  df-cnfld 20263  df-top 21221  df-topon 21238  df-topsp 21260  df-bases 21273  df-cld 21346  df-ntr 21347  df-cls 21348  df-nei 21425  df-lp 21463  df-perf 21464  df-cn 21554  df-cnp 21555  df-haus 21642  df-tx 21889  df-hmeo 22082  df-fil 22173  df-fm 22265  df-flim 22266  df-flf 22267  df-tmd 22399  df-tgp 22400  df-tsms 22453  df-trg 22486  df-xms 22648  df-ms 22649  df-tms 22650  df-nm 22910  df-ngp 22911  df-nrg 22913  df-nlm 22914  df-ii 23203  df-cncf 23204  df-limc 24182  df-dv 24183  df-log 24856  df-esum 30963
This theorem is referenced by:  esumfsup  31005  esumsup  31024
  Copyright terms: Public domain W3C validator