Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumfzf Structured version   Visualization version   GIF version

Theorem esumfzf 33098
Description: Formulating a partial extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.)
Hypothesis
Ref Expression
esumfzf.1 𝑘𝐹
Assertion
Ref Expression
esumfzf ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑁 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))
Distinct variable group:   𝑘,𝑁
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem esumfzf
Dummy variables 𝑖 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . . . 6 𝑘 𝑖 = 1
2 oveq2 7417 . . . . . 6 (𝑖 = 1 → (1...𝑖) = (1...1))
31, 2esumeq1d 33064 . . . . 5 (𝑖 = 1 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...1)(𝐹𝑘))
4 fveq2 6892 . . . . 5 (𝑖 = 1 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘1))
53, 4eqeq12d 2749 . . . 4 (𝑖 = 1 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1)))
65imbi2d 341 . . 3 (𝑖 = 1 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1))))
7 nfv 1918 . . . . . 6 𝑘 𝑖 = 𝑛
8 oveq2 7417 . . . . . 6 (𝑖 = 𝑛 → (1...𝑖) = (1...𝑛))
97, 8esumeq1d 33064 . . . . 5 (𝑖 = 𝑛 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
10 fveq2 6892 . . . . 5 (𝑖 = 𝑛 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘𝑛))
119, 10eqeq12d 2749 . . . 4 (𝑖 = 𝑛 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)))
1211imbi2d 341 . . 3 (𝑖 = 𝑛 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))))
13 nfv 1918 . . . . . 6 𝑘 𝑖 = (𝑛 + 1)
14 oveq2 7417 . . . . . 6 (𝑖 = (𝑛 + 1) → (1...𝑖) = (1...(𝑛 + 1)))
1513, 14esumeq1d 33064 . . . . 5 (𝑖 = (𝑛 + 1) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
16 fveq2 6892 . . . . 5 (𝑖 = (𝑛 + 1) → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))
1715, 16eqeq12d 2749 . . . 4 (𝑖 = (𝑛 + 1) → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1))))
1817imbi2d 341 . . 3 (𝑖 = (𝑛 + 1) → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
19 nfv 1918 . . . . . 6 𝑘 𝑖 = 𝑁
20 oveq2 7417 . . . . . 6 (𝑖 = 𝑁 → (1...𝑖) = (1...𝑁))
2119, 20esumeq1d 33064 . . . . 5 (𝑖 = 𝑁 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘))
22 fveq2 6892 . . . . 5 (𝑖 = 𝑁 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘𝑁))
2321, 22eqeq12d 2749 . . . 4 (𝑖 = 𝑁 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)))
2423imbi2d 341 . . 3 (𝑖 = 𝑁 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))))
25 fveq2 6892 . . . . . 6 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
26 nfcv 2904 . . . . . 6 𝑥{1}
27 nfcv 2904 . . . . . 6 𝑘{1}
28 nfcv 2904 . . . . . 6 𝑥(𝐹𝑘)
29 esumfzf.1 . . . . . . 7 𝑘𝐹
30 nfcv 2904 . . . . . . 7 𝑘𝑥
3129, 30nffv 6902 . . . . . 6 𝑘(𝐹𝑥)
3225, 26, 27, 28, 31cbvesum 33071 . . . . 5 Σ*𝑘 ∈ {1} (𝐹𝑘) = Σ*𝑥 ∈ {1} (𝐹𝑥)
33 simpr 486 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 = 1) → 𝑥 = 1)
3433fveq2d 6896 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 = 1) → (𝐹𝑥) = (𝐹‘1))
35 1z 12592 . . . . . . 7 1 ∈ ℤ
3635a1i 11 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → 1 ∈ ℤ)
37 1nn 12223 . . . . . . 7 1 ∈ ℕ
38 ffvelcdm 7084 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ (0[,]+∞))
3937, 38mpan2 690 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → (𝐹‘1) ∈ (0[,]+∞))
4034, 36, 39esumsn 33094 . . . . 5 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑥 ∈ {1} (𝐹𝑥) = (𝐹‘1))
4132, 40eqtrid 2785 . . . 4 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ {1} (𝐹𝑘) = (𝐹‘1))
42 fzsn 13543 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
4335, 42ax-mp 5 . . . . 5 (1...1) = {1}
44 esumeq1 33063 . . . . 5 ((1...1) = {1} → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = Σ*𝑘 ∈ {1} (𝐹𝑘))
4543, 44ax-mp 5 . . . 4 Σ*𝑘 ∈ (1...1)(𝐹𝑘) = Σ*𝑘 ∈ {1} (𝐹𝑘)
46 seq1 13979 . . . . 5 (1 ∈ ℤ → (seq1( +𝑒 , 𝐹)‘1) = (𝐹‘1))
4735, 46ax-mp 5 . . . 4 (seq1( +𝑒 , 𝐹)‘1) = (𝐹‘1)
4841, 45, 473eqtr4g 2798 . . 3 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1))
49 simpl 484 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝑛 ∈ ℕ)
50 nnuz 12865 . . . . . . . . 9 ℕ = (ℤ‘1)
5149, 50eleqtrdi 2844 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝑛 ∈ (ℤ‘1))
52 seqp1 13981 . . . . . . . 8 (𝑛 ∈ (ℤ‘1) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
5351, 52syl 17 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
5453adantr 482 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
55 simpr 486 . . . . . . 7 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))
5655oveq1d 7424 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
57 nfv 1918 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
5857nfci 2887 . . . . . . . . . . 11 𝑘
59 nfcv 2904 . . . . . . . . . . 11 𝑘(0[,]+∞)
6029, 58, 59nff 6714 . . . . . . . . . 10 𝑘 𝐹:ℕ⟶(0[,]+∞)
6157, 60nfan 1903 . . . . . . . . 9 𝑘(𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
62 fzsuc 13548 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6351, 62syl 17 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6461, 63esumeq1d 33064 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = Σ*𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝐹𝑘))
65 nfcv 2904 . . . . . . . . 9 𝑘(1...𝑛)
66 nfcv 2904 . . . . . . . . 9 𝑘{(𝑛 + 1)}
67 ovexd 7444 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (1...𝑛) ∈ V)
68 snex 5432 . . . . . . . . . 10 {(𝑛 + 1)} ∈ V
6968a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → {(𝑛 + 1)} ∈ V)
70 fzp1disj 13560 . . . . . . . . . 10 ((1...𝑛) ∩ {(𝑛 + 1)}) = ∅
7170a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → ((1...𝑛) ∩ {(𝑛 + 1)}) = ∅)
72 simplr 768 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
73 fzssnn 13545 . . . . . . . . . . . 12 (1 ∈ ℕ → (1...𝑛) ⊆ ℕ)
7437, 73ax-mp 5 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
75 simpr 486 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
7674, 75sselid 3981 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
7772, 76ffvelcdmd 7088 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
78 simplr 768 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝐹:ℕ⟶(0[,]+∞))
79 simpr 486 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 ∈ {(𝑛 + 1)})
80 velsn 4645 . . . . . . . . . . . 12 (𝑘 ∈ {(𝑛 + 1)} ↔ 𝑘 = (𝑛 + 1))
8179, 80sylib 217 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 = (𝑛 + 1))
82 simpll 766 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑛 ∈ ℕ)
8382peano2nnd 12229 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → (𝑛 + 1) ∈ ℕ)
8481, 83eqeltrd 2834 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 ∈ ℕ)
8578, 84ffvelcdmd 7088 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → (𝐹𝑘) ∈ (0[,]+∞))
8661, 65, 66, 67, 69, 71, 77, 85esumsplit 33082 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝐹𝑘) = (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘)))
87 nfcv 2904 . . . . . . . . . . 11 𝑥{(𝑛 + 1)}
8825, 87, 66, 28, 31cbvesum 33071 . . . . . . . . . 10 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘) = Σ*𝑥 ∈ {(𝑛 + 1)} (𝐹𝑥)
89 simpr 486 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑥 = (𝑛 + 1)) → 𝑥 = (𝑛 + 1))
9089fveq2d 6896 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑥 = (𝑛 + 1)) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
9149peano2nnd 12229 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (𝑛 + 1) ∈ ℕ)
92 simpr 486 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝐹:ℕ⟶(0[,]+∞))
9392, 91ffvelcdmd 7088 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (𝐹‘(𝑛 + 1)) ∈ (0[,]+∞))
9490, 91, 93esumsn 33094 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑥 ∈ {(𝑛 + 1)} (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
9588, 94eqtrid 2785 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
9695oveq2d 7425 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘)) = (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))))
9764, 86, 963eqtrrd 2778 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
9897adantr 482 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
9954, 56, 983eqtr2rd 2780 . . . . 5 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))
10099exp31 421 . . . 4 (𝑛 ∈ ℕ → (𝐹:ℕ⟶(0[,]+∞) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
101100a2d 29 . . 3 (𝑛 ∈ ℕ → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
1026, 12, 18, 24, 48, 101nnind 12230 . 2 (𝑁 ∈ ℕ → (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)))
103102impcom 409 1 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑁 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wnfc 2884  Vcvv 3475  cun 3947  cin 3948  wss 3949  c0 4323  {csn 4629  wf 6540  cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111   + caddc 11113  +∞cpnf 11245  cn 12212  cz 12558  cuz 12822   +𝑒 cxad 13090  [,]cicc 13327  ...cfz 13484  seqcseq 13966  Σ*cesum 33056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ioc 13329  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-shft 15014  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15633  df-ef 16011  df-sin 16013  df-cos 16014  df-pi 16016  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-ordt 17447  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-ps 18519  df-tsr 18520  df-plusf 18560  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671  df-submnd 18672  df-grp 18822  df-minusg 18823  df-sbg 18824  df-mulg 18951  df-subg 19003  df-cntz 19181  df-cmn 19650  df-abl 19651  df-mgp 19988  df-ur 20005  df-ring 20058  df-cring 20059  df-subrg 20317  df-abv 20425  df-lmod 20473  df-scaf 20474  df-sra 20785  df-rgmod 20786  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-fbas 20941  df-fg 20942  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-lp 22640  df-perf 22641  df-cn 22731  df-cnp 22732  df-haus 22819  df-tx 23066  df-hmeo 23259  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444  df-tmd 23576  df-tgp 23577  df-tsms 23631  df-trg 23664  df-xms 23826  df-ms 23827  df-tms 23828  df-nm 24091  df-ngp 24092  df-nrg 24094  df-nlm 24095  df-ii 24393  df-cncf 24394  df-limc 25383  df-dv 25384  df-log 26065  df-esum 33057
This theorem is referenced by:  esumfsup  33099  esumsup  33118
  Copyright terms: Public domain W3C validator