Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumfzf Structured version   Visualization version   GIF version

Theorem esumfzf 31703
Description: Formulating a partial extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.)
Hypothesis
Ref Expression
esumfzf.1 𝑘𝐹
Assertion
Ref Expression
esumfzf ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑁 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))
Distinct variable group:   𝑘,𝑁
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem esumfzf
Dummy variables 𝑖 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1922 . . . . . 6 𝑘 𝑖 = 1
2 oveq2 7199 . . . . . 6 (𝑖 = 1 → (1...𝑖) = (1...1))
31, 2esumeq1d 31669 . . . . 5 (𝑖 = 1 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...1)(𝐹𝑘))
4 fveq2 6695 . . . . 5 (𝑖 = 1 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘1))
53, 4eqeq12d 2752 . . . 4 (𝑖 = 1 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1)))
65imbi2d 344 . . 3 (𝑖 = 1 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1))))
7 nfv 1922 . . . . . 6 𝑘 𝑖 = 𝑛
8 oveq2 7199 . . . . . 6 (𝑖 = 𝑛 → (1...𝑖) = (1...𝑛))
97, 8esumeq1d 31669 . . . . 5 (𝑖 = 𝑛 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
10 fveq2 6695 . . . . 5 (𝑖 = 𝑛 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘𝑛))
119, 10eqeq12d 2752 . . . 4 (𝑖 = 𝑛 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)))
1211imbi2d 344 . . 3 (𝑖 = 𝑛 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))))
13 nfv 1922 . . . . . 6 𝑘 𝑖 = (𝑛 + 1)
14 oveq2 7199 . . . . . 6 (𝑖 = (𝑛 + 1) → (1...𝑖) = (1...(𝑛 + 1)))
1513, 14esumeq1d 31669 . . . . 5 (𝑖 = (𝑛 + 1) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
16 fveq2 6695 . . . . 5 (𝑖 = (𝑛 + 1) → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))
1715, 16eqeq12d 2752 . . . 4 (𝑖 = (𝑛 + 1) → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1))))
1817imbi2d 344 . . 3 (𝑖 = (𝑛 + 1) → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
19 nfv 1922 . . . . . 6 𝑘 𝑖 = 𝑁
20 oveq2 7199 . . . . . 6 (𝑖 = 𝑁 → (1...𝑖) = (1...𝑁))
2119, 20esumeq1d 31669 . . . . 5 (𝑖 = 𝑁 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘))
22 fveq2 6695 . . . . 5 (𝑖 = 𝑁 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘𝑁))
2321, 22eqeq12d 2752 . . . 4 (𝑖 = 𝑁 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)))
2423imbi2d 344 . . 3 (𝑖 = 𝑁 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))))
25 fveq2 6695 . . . . . 6 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
26 nfcv 2897 . . . . . 6 𝑥{1}
27 nfcv 2897 . . . . . 6 𝑘{1}
28 nfcv 2897 . . . . . 6 𝑥(𝐹𝑘)
29 esumfzf.1 . . . . . . 7 𝑘𝐹
30 nfcv 2897 . . . . . . 7 𝑘𝑥
3129, 30nffv 6705 . . . . . 6 𝑘(𝐹𝑥)
3225, 26, 27, 28, 31cbvesum 31676 . . . . 5 Σ*𝑘 ∈ {1} (𝐹𝑘) = Σ*𝑥 ∈ {1} (𝐹𝑥)
33 simpr 488 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 = 1) → 𝑥 = 1)
3433fveq2d 6699 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 = 1) → (𝐹𝑥) = (𝐹‘1))
35 1z 12172 . . . . . . 7 1 ∈ ℤ
3635a1i 11 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → 1 ∈ ℤ)
37 1nn 11806 . . . . . . 7 1 ∈ ℕ
38 ffvelrn 6880 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ (0[,]+∞))
3937, 38mpan2 691 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → (𝐹‘1) ∈ (0[,]+∞))
4034, 36, 39esumsn 31699 . . . . 5 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑥 ∈ {1} (𝐹𝑥) = (𝐹‘1))
4132, 40syl5eq 2783 . . . 4 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ {1} (𝐹𝑘) = (𝐹‘1))
42 fzsn 13119 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
4335, 42ax-mp 5 . . . . 5 (1...1) = {1}
44 esumeq1 31668 . . . . 5 ((1...1) = {1} → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = Σ*𝑘 ∈ {1} (𝐹𝑘))
4543, 44ax-mp 5 . . . 4 Σ*𝑘 ∈ (1...1)(𝐹𝑘) = Σ*𝑘 ∈ {1} (𝐹𝑘)
46 seq1 13552 . . . . 5 (1 ∈ ℤ → (seq1( +𝑒 , 𝐹)‘1) = (𝐹‘1))
4735, 46ax-mp 5 . . . 4 (seq1( +𝑒 , 𝐹)‘1) = (𝐹‘1)
4841, 45, 473eqtr4g 2796 . . 3 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1))
49 simpl 486 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝑛 ∈ ℕ)
50 nnuz 12442 . . . . . . . . 9 ℕ = (ℤ‘1)
5149, 50eleqtrdi 2841 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝑛 ∈ (ℤ‘1))
52 seqp1 13554 . . . . . . . 8 (𝑛 ∈ (ℤ‘1) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
5351, 52syl 17 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
5453adantr 484 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
55 simpr 488 . . . . . . 7 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))
5655oveq1d 7206 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
57 nfv 1922 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
5857nfci 2880 . . . . . . . . . . 11 𝑘
59 nfcv 2897 . . . . . . . . . . 11 𝑘(0[,]+∞)
6029, 58, 59nff 6519 . . . . . . . . . 10 𝑘 𝐹:ℕ⟶(0[,]+∞)
6157, 60nfan 1907 . . . . . . . . 9 𝑘(𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
62 fzsuc 13124 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6351, 62syl 17 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6461, 63esumeq1d 31669 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = Σ*𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝐹𝑘))
65 nfcv 2897 . . . . . . . . 9 𝑘(1...𝑛)
66 nfcv 2897 . . . . . . . . 9 𝑘{(𝑛 + 1)}
67 ovexd 7226 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (1...𝑛) ∈ V)
68 snex 5309 . . . . . . . . . 10 {(𝑛 + 1)} ∈ V
6968a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → {(𝑛 + 1)} ∈ V)
70 fzp1disj 13136 . . . . . . . . . 10 ((1...𝑛) ∩ {(𝑛 + 1)}) = ∅
7170a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → ((1...𝑛) ∩ {(𝑛 + 1)}) = ∅)
72 simplr 769 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
73 fzssnn 13121 . . . . . . . . . . . 12 (1 ∈ ℕ → (1...𝑛) ⊆ ℕ)
7437, 73ax-mp 5 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
75 simpr 488 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
7674, 75sseldi 3885 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
7772, 76ffvelrnd 6883 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
78 simplr 769 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝐹:ℕ⟶(0[,]+∞))
79 simpr 488 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 ∈ {(𝑛 + 1)})
80 velsn 4543 . . . . . . . . . . . 12 (𝑘 ∈ {(𝑛 + 1)} ↔ 𝑘 = (𝑛 + 1))
8179, 80sylib 221 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 = (𝑛 + 1))
82 simpll 767 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑛 ∈ ℕ)
8382peano2nnd 11812 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → (𝑛 + 1) ∈ ℕ)
8481, 83eqeltrd 2831 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 ∈ ℕ)
8578, 84ffvelrnd 6883 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → (𝐹𝑘) ∈ (0[,]+∞))
8661, 65, 66, 67, 69, 71, 77, 85esumsplit 31687 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝐹𝑘) = (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘)))
87 nfcv 2897 . . . . . . . . . . 11 𝑥{(𝑛 + 1)}
8825, 87, 66, 28, 31cbvesum 31676 . . . . . . . . . 10 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘) = Σ*𝑥 ∈ {(𝑛 + 1)} (𝐹𝑥)
89 simpr 488 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑥 = (𝑛 + 1)) → 𝑥 = (𝑛 + 1))
9089fveq2d 6699 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑥 = (𝑛 + 1)) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
9149peano2nnd 11812 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (𝑛 + 1) ∈ ℕ)
92 simpr 488 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝐹:ℕ⟶(0[,]+∞))
9392, 91ffvelrnd 6883 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (𝐹‘(𝑛 + 1)) ∈ (0[,]+∞))
9490, 91, 93esumsn 31699 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑥 ∈ {(𝑛 + 1)} (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
9588, 94syl5eq 2783 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
9695oveq2d 7207 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘)) = (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))))
9764, 86, 963eqtrrd 2776 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
9897adantr 484 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
9954, 56, 983eqtr2rd 2778 . . . . 5 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))
10099exp31 423 . . . 4 (𝑛 ∈ ℕ → (𝐹:ℕ⟶(0[,]+∞) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
101100a2d 29 . . 3 (𝑛 ∈ ℕ → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
1026, 12, 18, 24, 48, 101nnind 11813 . 2 (𝑁 ∈ ℕ → (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)))
103102impcom 411 1 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑁 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wnfc 2877  Vcvv 3398  cun 3851  cin 3852  wss 3853  c0 4223  {csn 4527  wf 6354  cfv 6358  (class class class)co 7191  0cc0 10694  1c1 10695   + caddc 10697  +∞cpnf 10829  cn 11795  cz 12141  cuz 12403   +𝑒 cxad 12667  [,]cicc 12903  ...cfz 13060  seqcseq 13539  Σ*cesum 31661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ioc 12905  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-fac 13805  df-bc 13834  df-hash 13862  df-shft 14595  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-limsup 14997  df-clim 15014  df-rlim 15015  df-sum 15215  df-ef 15592  df-sin 15594  df-cos 15595  df-pi 15597  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-ordt 16960  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-ps 18026  df-tsr 18027  df-plusf 18067  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-mulg 18443  df-subg 18494  df-cntz 18665  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-subrg 19752  df-abv 19807  df-lmod 19855  df-scaf 19856  df-sra 20163  df-rgmod 20164  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-haus 22166  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-tmd 22923  df-tgp 22924  df-tsms 22978  df-trg 23011  df-xms 23172  df-ms 23173  df-tms 23174  df-nm 23434  df-ngp 23435  df-nrg 23437  df-nlm 23438  df-ii 23728  df-cncf 23729  df-limc 24717  df-dv 24718  df-log 25399  df-esum 31662
This theorem is referenced by:  esumfsup  31704  esumsup  31723
  Copyright terms: Public domain W3C validator