Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumfzf Structured version   Visualization version   GIF version

Theorem esumfzf 32016
Description: Formulating a partial extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.)
Hypothesis
Ref Expression
esumfzf.1 𝑘𝐹
Assertion
Ref Expression
esumfzf ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑁 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))
Distinct variable group:   𝑘,𝑁
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem esumfzf
Dummy variables 𝑖 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1920 . . . . . 6 𝑘 𝑖 = 1
2 oveq2 7276 . . . . . 6 (𝑖 = 1 → (1...𝑖) = (1...1))
31, 2esumeq1d 31982 . . . . 5 (𝑖 = 1 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...1)(𝐹𝑘))
4 fveq2 6768 . . . . 5 (𝑖 = 1 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘1))
53, 4eqeq12d 2755 . . . 4 (𝑖 = 1 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1)))
65imbi2d 340 . . 3 (𝑖 = 1 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1))))
7 nfv 1920 . . . . . 6 𝑘 𝑖 = 𝑛
8 oveq2 7276 . . . . . 6 (𝑖 = 𝑛 → (1...𝑖) = (1...𝑛))
97, 8esumeq1d 31982 . . . . 5 (𝑖 = 𝑛 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
10 fveq2 6768 . . . . 5 (𝑖 = 𝑛 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘𝑛))
119, 10eqeq12d 2755 . . . 4 (𝑖 = 𝑛 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)))
1211imbi2d 340 . . 3 (𝑖 = 𝑛 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))))
13 nfv 1920 . . . . . 6 𝑘 𝑖 = (𝑛 + 1)
14 oveq2 7276 . . . . . 6 (𝑖 = (𝑛 + 1) → (1...𝑖) = (1...(𝑛 + 1)))
1513, 14esumeq1d 31982 . . . . 5 (𝑖 = (𝑛 + 1) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
16 fveq2 6768 . . . . 5 (𝑖 = (𝑛 + 1) → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))
1715, 16eqeq12d 2755 . . . 4 (𝑖 = (𝑛 + 1) → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1))))
1817imbi2d 340 . . 3 (𝑖 = (𝑛 + 1) → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
19 nfv 1920 . . . . . 6 𝑘 𝑖 = 𝑁
20 oveq2 7276 . . . . . 6 (𝑖 = 𝑁 → (1...𝑖) = (1...𝑁))
2119, 20esumeq1d 31982 . . . . 5 (𝑖 = 𝑁 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘))
22 fveq2 6768 . . . . 5 (𝑖 = 𝑁 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘𝑁))
2321, 22eqeq12d 2755 . . . 4 (𝑖 = 𝑁 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)))
2423imbi2d 340 . . 3 (𝑖 = 𝑁 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))))
25 fveq2 6768 . . . . . 6 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
26 nfcv 2908 . . . . . 6 𝑥{1}
27 nfcv 2908 . . . . . 6 𝑘{1}
28 nfcv 2908 . . . . . 6 𝑥(𝐹𝑘)
29 esumfzf.1 . . . . . . 7 𝑘𝐹
30 nfcv 2908 . . . . . . 7 𝑘𝑥
3129, 30nffv 6778 . . . . . 6 𝑘(𝐹𝑥)
3225, 26, 27, 28, 31cbvesum 31989 . . . . 5 Σ*𝑘 ∈ {1} (𝐹𝑘) = Σ*𝑥 ∈ {1} (𝐹𝑥)
33 simpr 484 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 = 1) → 𝑥 = 1)
3433fveq2d 6772 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 = 1) → (𝐹𝑥) = (𝐹‘1))
35 1z 12333 . . . . . . 7 1 ∈ ℤ
3635a1i 11 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → 1 ∈ ℤ)
37 1nn 11967 . . . . . . 7 1 ∈ ℕ
38 ffvelrn 6953 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ (0[,]+∞))
3937, 38mpan2 687 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → (𝐹‘1) ∈ (0[,]+∞))
4034, 36, 39esumsn 32012 . . . . 5 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑥 ∈ {1} (𝐹𝑥) = (𝐹‘1))
4132, 40eqtrid 2791 . . . 4 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ {1} (𝐹𝑘) = (𝐹‘1))
42 fzsn 13280 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
4335, 42ax-mp 5 . . . . 5 (1...1) = {1}
44 esumeq1 31981 . . . . 5 ((1...1) = {1} → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = Σ*𝑘 ∈ {1} (𝐹𝑘))
4543, 44ax-mp 5 . . . 4 Σ*𝑘 ∈ (1...1)(𝐹𝑘) = Σ*𝑘 ∈ {1} (𝐹𝑘)
46 seq1 13715 . . . . 5 (1 ∈ ℤ → (seq1( +𝑒 , 𝐹)‘1) = (𝐹‘1))
4735, 46ax-mp 5 . . . 4 (seq1( +𝑒 , 𝐹)‘1) = (𝐹‘1)
4841, 45, 473eqtr4g 2804 . . 3 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1))
49 simpl 482 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝑛 ∈ ℕ)
50 nnuz 12603 . . . . . . . . 9 ℕ = (ℤ‘1)
5149, 50eleqtrdi 2850 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝑛 ∈ (ℤ‘1))
52 seqp1 13717 . . . . . . . 8 (𝑛 ∈ (ℤ‘1) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
5351, 52syl 17 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
5453adantr 480 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
55 simpr 484 . . . . . . 7 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))
5655oveq1d 7283 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
57 nfv 1920 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
5857nfci 2891 . . . . . . . . . . 11 𝑘
59 nfcv 2908 . . . . . . . . . . 11 𝑘(0[,]+∞)
6029, 58, 59nff 6592 . . . . . . . . . 10 𝑘 𝐹:ℕ⟶(0[,]+∞)
6157, 60nfan 1905 . . . . . . . . 9 𝑘(𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
62 fzsuc 13285 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6351, 62syl 17 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6461, 63esumeq1d 31982 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = Σ*𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝐹𝑘))
65 nfcv 2908 . . . . . . . . 9 𝑘(1...𝑛)
66 nfcv 2908 . . . . . . . . 9 𝑘{(𝑛 + 1)}
67 ovexd 7303 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (1...𝑛) ∈ V)
68 snex 5357 . . . . . . . . . 10 {(𝑛 + 1)} ∈ V
6968a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → {(𝑛 + 1)} ∈ V)
70 fzp1disj 13297 . . . . . . . . . 10 ((1...𝑛) ∩ {(𝑛 + 1)}) = ∅
7170a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → ((1...𝑛) ∩ {(𝑛 + 1)}) = ∅)
72 simplr 765 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
73 fzssnn 13282 . . . . . . . . . . . 12 (1 ∈ ℕ → (1...𝑛) ⊆ ℕ)
7437, 73ax-mp 5 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
75 simpr 484 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
7674, 75sselid 3923 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
7772, 76ffvelrnd 6956 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
78 simplr 765 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝐹:ℕ⟶(0[,]+∞))
79 simpr 484 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 ∈ {(𝑛 + 1)})
80 velsn 4582 . . . . . . . . . . . 12 (𝑘 ∈ {(𝑛 + 1)} ↔ 𝑘 = (𝑛 + 1))
8179, 80sylib 217 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 = (𝑛 + 1))
82 simpll 763 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑛 ∈ ℕ)
8382peano2nnd 11973 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → (𝑛 + 1) ∈ ℕ)
8481, 83eqeltrd 2840 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 ∈ ℕ)
8578, 84ffvelrnd 6956 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → (𝐹𝑘) ∈ (0[,]+∞))
8661, 65, 66, 67, 69, 71, 77, 85esumsplit 32000 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝐹𝑘) = (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘)))
87 nfcv 2908 . . . . . . . . . . 11 𝑥{(𝑛 + 1)}
8825, 87, 66, 28, 31cbvesum 31989 . . . . . . . . . 10 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘) = Σ*𝑥 ∈ {(𝑛 + 1)} (𝐹𝑥)
89 simpr 484 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑥 = (𝑛 + 1)) → 𝑥 = (𝑛 + 1))
9089fveq2d 6772 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑥 = (𝑛 + 1)) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
9149peano2nnd 11973 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (𝑛 + 1) ∈ ℕ)
92 simpr 484 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝐹:ℕ⟶(0[,]+∞))
9392, 91ffvelrnd 6956 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (𝐹‘(𝑛 + 1)) ∈ (0[,]+∞))
9490, 91, 93esumsn 32012 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑥 ∈ {(𝑛 + 1)} (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
9588, 94eqtrid 2791 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
9695oveq2d 7284 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘)) = (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))))
9764, 86, 963eqtrrd 2784 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
9897adantr 480 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
9954, 56, 983eqtr2rd 2786 . . . . 5 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))
10099exp31 419 . . . 4 (𝑛 ∈ ℕ → (𝐹:ℕ⟶(0[,]+∞) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
101100a2d 29 . . 3 (𝑛 ∈ ℕ → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
1026, 12, 18, 24, 48, 101nnind 11974 . 2 (𝑁 ∈ ℕ → (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)))
103102impcom 407 1 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑁 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wnfc 2888  Vcvv 3430  cun 3889  cin 3890  wss 3891  c0 4261  {csn 4566  wf 6426  cfv 6430  (class class class)co 7268  0cc0 10855  1c1 10856   + caddc 10858  +∞cpnf 10990  cn 11956  cz 12302  cuz 12564   +𝑒 cxad 12828  [,]cicc 13064  ...cfz 13221  seqcseq 13702  Σ*cesum 31974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-pm 8592  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-ioc 13066  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-mod 13571  df-seq 13703  df-exp 13764  df-fac 13969  df-bc 13998  df-hash 14026  df-shft 14759  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-limsup 15161  df-clim 15178  df-rlim 15179  df-sum 15379  df-ef 15758  df-sin 15760  df-cos 15761  df-pi 15763  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-hom 16967  df-cco 16968  df-rest 17114  df-topn 17115  df-0g 17133  df-gsum 17134  df-topgen 17135  df-pt 17136  df-prds 17139  df-ordt 17193  df-xrs 17194  df-qtop 17199  df-imas 17200  df-xps 17202  df-mre 17276  df-mrc 17277  df-acs 17279  df-ps 18265  df-tsr 18266  df-plusf 18306  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-mhm 18411  df-submnd 18412  df-grp 18561  df-minusg 18562  df-sbg 18563  df-mulg 18682  df-subg 18733  df-cntz 18904  df-cmn 19369  df-abl 19370  df-mgp 19702  df-ur 19719  df-ring 19766  df-cring 19767  df-subrg 20003  df-abv 20058  df-lmod 20106  df-scaf 20107  df-sra 20415  df-rgmod 20416  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-fbas 20575  df-fg 20576  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-lp 22268  df-perf 22269  df-cn 22359  df-cnp 22360  df-haus 22447  df-tx 22694  df-hmeo 22887  df-fil 22978  df-fm 23070  df-flim 23071  df-flf 23072  df-tmd 23204  df-tgp 23205  df-tsms 23259  df-trg 23292  df-xms 23454  df-ms 23455  df-tms 23456  df-nm 23719  df-ngp 23720  df-nrg 23722  df-nlm 23723  df-ii 24021  df-cncf 24022  df-limc 25011  df-dv 25012  df-log 25693  df-esum 31975
This theorem is referenced by:  esumfsup  32017  esumsup  32036
  Copyright terms: Public domain W3C validator