Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑘 𝑖 = 1 |
2 | | oveq2 7263 |
. . . . . 6
⊢ (𝑖 = 1 → (1...𝑖) = (1...1)) |
3 | 1, 2 | esumeq1d 31903 |
. . . . 5
⊢ (𝑖 = 1 →
Σ*𝑘 ∈
(1...𝑖)(𝐹‘𝑘) = Σ*𝑘 ∈ (1...1)(𝐹‘𝑘)) |
4 | | fveq2 6756 |
. . . . 5
⊢ (𝑖 = 1 → (seq1(
+𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘1)) |
5 | 3, 4 | eqeq12d 2754 |
. . . 4
⊢ (𝑖 = 1 →
(Σ*𝑘
∈ (1...𝑖)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...1)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘1))) |
6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑖 = 1 → ((𝐹:ℕ⟶(0[,]+∞) →
Σ*𝑘 ∈
(1...𝑖)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) →
Σ*𝑘 ∈
(1...1)(𝐹‘𝑘) = (seq1( +𝑒
, 𝐹)‘1)))) |
7 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑘 𝑖 = 𝑛 |
8 | | oveq2 7263 |
. . . . . 6
⊢ (𝑖 = 𝑛 → (1...𝑖) = (1...𝑛)) |
9 | 7, 8 | esumeq1d 31903 |
. . . . 5
⊢ (𝑖 = 𝑛 → Σ*𝑘 ∈ (1...𝑖)(𝐹‘𝑘) = Σ*𝑘 ∈ (1...𝑛)(𝐹‘𝑘)) |
10 | | fveq2 6756 |
. . . . 5
⊢ (𝑖 = 𝑛 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘𝑛)) |
11 | 9, 10 | eqeq12d 2754 |
. . . 4
⊢ (𝑖 = 𝑛 → (Σ*𝑘 ∈ (1...𝑖)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...𝑛)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑖 = 𝑛 → ((𝐹:ℕ⟶(0[,]+∞) →
Σ*𝑘 ∈
(1...𝑖)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) →
Σ*𝑘 ∈
(1...𝑛)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)))) |
13 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑘 𝑖 = (𝑛 + 1) |
14 | | oveq2 7263 |
. . . . . 6
⊢ (𝑖 = (𝑛 + 1) → (1...𝑖) = (1...(𝑛 + 1))) |
15 | 13, 14 | esumeq1d 31903 |
. . . . 5
⊢ (𝑖 = (𝑛 + 1) → Σ*𝑘 ∈ (1...𝑖)(𝐹‘𝑘) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹‘𝑘)) |
16 | | fveq2 6756 |
. . . . 5
⊢ (𝑖 = (𝑛 + 1) → (seq1( +𝑒 ,
𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1))) |
17 | 15, 16 | eqeq12d 2754 |
. . . 4
⊢ (𝑖 = (𝑛 + 1) → (Σ*𝑘 ∈ (1...𝑖)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))) |
18 | 17 | imbi2d 340 |
. . 3
⊢ (𝑖 = (𝑛 + 1) → ((𝐹:ℕ⟶(0[,]+∞) →
Σ*𝑘 ∈
(1...𝑖)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) →
Σ*𝑘 ∈
(1...(𝑛 + 1))(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1))))) |
19 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑘 𝑖 = 𝑁 |
20 | | oveq2 7263 |
. . . . . 6
⊢ (𝑖 = 𝑁 → (1...𝑖) = (1...𝑁)) |
21 | 19, 20 | esumeq1d 31903 |
. . . . 5
⊢ (𝑖 = 𝑁 → Σ*𝑘 ∈ (1...𝑖)(𝐹‘𝑘) = Σ*𝑘 ∈ (1...𝑁)(𝐹‘𝑘)) |
22 | | fveq2 6756 |
. . . . 5
⊢ (𝑖 = 𝑁 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘𝑁)) |
23 | 21, 22 | eqeq12d 2754 |
. . . 4
⊢ (𝑖 = 𝑁 → (Σ*𝑘 ∈ (1...𝑖)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...𝑁)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))) |
24 | 23 | imbi2d 340 |
. . 3
⊢ (𝑖 = 𝑁 → ((𝐹:ℕ⟶(0[,]+∞) →
Σ*𝑘 ∈
(1...𝑖)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) →
Σ*𝑘 ∈
(1...𝑁)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)))) |
25 | | fveq2 6756 |
. . . . . 6
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
26 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑥{1} |
27 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑘{1} |
28 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑥(𝐹‘𝑘) |
29 | | esumfzf.1 |
. . . . . . 7
⊢
Ⅎ𝑘𝐹 |
30 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑘𝑥 |
31 | 29, 30 | nffv 6766 |
. . . . . 6
⊢
Ⅎ𝑘(𝐹‘𝑥) |
32 | 25, 26, 27, 28, 31 | cbvesum 31910 |
. . . . 5
⊢
Σ*𝑘
∈ {1} (𝐹‘𝑘) = Σ*𝑥 ∈ {1} (𝐹‘𝑥) |
33 | | simpr 484 |
. . . . . . 7
⊢ ((𝐹:ℕ⟶(0[,]+∞)
∧ 𝑥 = 1) → 𝑥 = 1) |
34 | 33 | fveq2d 6760 |
. . . . . 6
⊢ ((𝐹:ℕ⟶(0[,]+∞)
∧ 𝑥 = 1) → (𝐹‘𝑥) = (𝐹‘1)) |
35 | | 1z 12280 |
. . . . . . 7
⊢ 1 ∈
ℤ |
36 | 35 | a1i 11 |
. . . . . 6
⊢ (𝐹:ℕ⟶(0[,]+∞)
→ 1 ∈ ℤ) |
37 | | 1nn 11914 |
. . . . . . 7
⊢ 1 ∈
ℕ |
38 | | ffvelrn 6941 |
. . . . . . 7
⊢ ((𝐹:ℕ⟶(0[,]+∞)
∧ 1 ∈ ℕ) → (𝐹‘1) ∈
(0[,]+∞)) |
39 | 37, 38 | mpan2 687 |
. . . . . 6
⊢ (𝐹:ℕ⟶(0[,]+∞)
→ (𝐹‘1) ∈
(0[,]+∞)) |
40 | 34, 36, 39 | esumsn 31933 |
. . . . 5
⊢ (𝐹:ℕ⟶(0[,]+∞)
→ Σ*𝑥
∈ {1} (𝐹‘𝑥) = (𝐹‘1)) |
41 | 32, 40 | syl5eq 2791 |
. . . 4
⊢ (𝐹:ℕ⟶(0[,]+∞)
→ Σ*𝑘
∈ {1} (𝐹‘𝑘) = (𝐹‘1)) |
42 | | fzsn 13227 |
. . . . . 6
⊢ (1 ∈
ℤ → (1...1) = {1}) |
43 | 35, 42 | ax-mp 5 |
. . . . 5
⊢ (1...1) =
{1} |
44 | | esumeq1 31902 |
. . . . 5
⊢ ((1...1)
= {1} → Σ*𝑘 ∈ (1...1)(𝐹‘𝑘) = Σ*𝑘 ∈ {1} (𝐹‘𝑘)) |
45 | 43, 44 | ax-mp 5 |
. . . 4
⊢
Σ*𝑘
∈ (1...1)(𝐹‘𝑘) = Σ*𝑘 ∈ {1} (𝐹‘𝑘) |
46 | | seq1 13662 |
. . . . 5
⊢ (1 ∈
ℤ → (seq1( +𝑒 , 𝐹)‘1) = (𝐹‘1)) |
47 | 35, 46 | ax-mp 5 |
. . . 4
⊢ (seq1(
+𝑒 , 𝐹)‘1) = (𝐹‘1) |
48 | 41, 45, 47 | 3eqtr4g 2804 |
. . 3
⊢ (𝐹:ℕ⟶(0[,]+∞)
→ Σ*𝑘
∈ (1...1)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘1)) |
49 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ 𝑛 ∈
ℕ) |
50 | | nnuz 12550 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
51 | 49, 50 | eleqtrdi 2849 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ 𝑛 ∈
(ℤ≥‘1)) |
52 | | seqp1 13664 |
. . . . . . . 8
⊢ (𝑛 ∈
(ℤ≥‘1) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 ,
𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1)))) |
53 | 51, 52 | syl 17 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 ,
𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1)))) |
54 | 53 | adantr 480 |
. . . . . 6
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ Σ*𝑘
∈ (1...𝑛)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (seq1( +𝑒 ,
𝐹)‘(𝑛 + 1)) = ((seq1(
+𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1)))) |
55 | | simpr 484 |
. . . . . . 7
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ Σ*𝑘
∈ (1...𝑛)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → Σ*𝑘 ∈ (1...𝑛)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) |
56 | 55 | oveq1d 7270 |
. . . . . 6
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ Σ*𝑘
∈ (1...𝑛)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹‘𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = ((seq1( +𝑒 ,
𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1)))) |
57 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑘 𝑛 ∈ ℕ |
58 | 57 | nfci 2889 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘ℕ |
59 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(0[,]+∞) |
60 | 29, 58, 59 | nff 6580 |
. . . . . . . . . 10
⊢
Ⅎ𝑘 𝐹:ℕ⟶(0[,]+∞) |
61 | 57, 60 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) |
62 | | fzsuc 13232 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)})) |
63 | 51, 62 | syl 17 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ (1...(𝑛 + 1)) =
((1...𝑛) ∪ {(𝑛 + 1)})) |
64 | 61, 63 | esumeq1d 31903 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ Σ*𝑘
∈ (1...(𝑛 + 1))(𝐹‘𝑘) = Σ*𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝐹‘𝑘)) |
65 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑘(1...𝑛) |
66 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑘{(𝑛 + 1)} |
67 | | ovexd 7290 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ (1...𝑛) ∈
V) |
68 | | snex 5349 |
. . . . . . . . . 10
⊢ {(𝑛 + 1)} ∈ V |
69 | 68 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ {(𝑛 + 1)} ∈
V) |
70 | | fzp1disj 13244 |
. . . . . . . . . 10
⊢
((1...𝑛) ∩
{(𝑛 + 1)}) =
∅ |
71 | 70 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ ((1...𝑛) ∩
{(𝑛 + 1)}) =
∅) |
72 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞)) |
73 | | fzssnn 13229 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℕ → (1...𝑛)
⊆ ℕ) |
74 | 37, 73 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(1...𝑛) ⊆
ℕ |
75 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛)) |
76 | 74, 75 | sselid 3915 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ) |
77 | 72, 76 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑘 ∈ (1...𝑛)) → (𝐹‘𝑘) ∈ (0[,]+∞)) |
78 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝐹:ℕ⟶(0[,]+∞)) |
79 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 ∈ {(𝑛 + 1)}) |
80 | | velsn 4574 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {(𝑛 + 1)} ↔ 𝑘 = (𝑛 + 1)) |
81 | 79, 80 | sylib 217 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 = (𝑛 + 1)) |
82 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑛 ∈
ℕ) |
83 | 82 | peano2nnd 11920 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑘 ∈ {(𝑛 + 1)}) → (𝑛 + 1) ∈
ℕ) |
84 | 81, 83 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 ∈
ℕ) |
85 | 78, 84 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑘 ∈ {(𝑛 + 1)}) → (𝐹‘𝑘) ∈ (0[,]+∞)) |
86 | 61, 65, 66, 67, 69, 71, 77, 85 | esumsplit 31921 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ Σ*𝑘
∈ ((1...𝑛) ∪
{(𝑛 + 1)})(𝐹‘𝑘) = (Σ*𝑘 ∈ (1...𝑛)(𝐹‘𝑘) +𝑒
Σ*𝑘 ∈
{(𝑛 + 1)} (𝐹‘𝑘))) |
87 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥{(𝑛 + 1)} |
88 | 25, 87, 66, 28, 31 | cbvesum 31910 |
. . . . . . . . . 10
⊢
Σ*𝑘
∈ {(𝑛 + 1)} (𝐹‘𝑘) = Σ*𝑥 ∈ {(𝑛 + 1)} (𝐹‘𝑥) |
89 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑥 = (𝑛 + 1)) → 𝑥 = (𝑛 + 1)) |
90 | 89 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ 𝑥 = (𝑛 + 1)) → (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) |
91 | 49 | peano2nnd 11920 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ (𝑛 + 1) ∈
ℕ) |
92 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ 𝐹:ℕ⟶(0[,]+∞)) |
93 | 92, 91 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ (𝐹‘(𝑛 + 1)) ∈
(0[,]+∞)) |
94 | 90, 91, 93 | esumsn 31933 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ Σ*𝑥
∈ {(𝑛 + 1)} (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) |
95 | 88, 94 | syl5eq 2791 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ Σ*𝑘
∈ {(𝑛 + 1)} (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
96 | 95 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ (Σ*𝑘 ∈ (1...𝑛)(𝐹‘𝑘) +𝑒
Σ*𝑘 ∈
{(𝑛 + 1)} (𝐹‘𝑘)) = (Σ*𝑘 ∈ (1...𝑛)(𝐹‘𝑘) +𝑒 (𝐹‘(𝑛 + 1)))) |
97 | 64, 86, 96 | 3eqtrrd 2783 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
→ (Σ*𝑘 ∈ (1...𝑛)(𝐹‘𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹‘𝑘)) |
98 | 97 | adantr 480 |
. . . . . 6
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ Σ*𝑘
∈ (1...𝑛)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹‘𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹‘𝑘)) |
99 | 54, 56, 98 | 3eqtr2rd 2785 |
. . . . 5
⊢ (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
∧ Σ*𝑘
∈ (1...𝑛)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1))) |
100 | 99 | exp31 419 |
. . . 4
⊢ (𝑛 ∈ ℕ → (𝐹:ℕ⟶(0[,]+∞)
→ (Σ*𝑘 ∈ (1...𝑛)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1))))) |
101 | 100 | a2d 29 |
. . 3
⊢ (𝑛 ∈ ℕ → ((𝐹:ℕ⟶(0[,]+∞)
→ Σ*𝑘
∈ (1...𝑛)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (𝐹:ℕ⟶(0[,]+∞) →
Σ*𝑘 ∈
(1...(𝑛 + 1))(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1))))) |
102 | 6, 12, 18, 24, 48, 101 | nnind 11921 |
. 2
⊢ (𝑁 ∈ ℕ → (𝐹:ℕ⟶(0[,]+∞)
→ Σ*𝑘
∈ (1...𝑁)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))) |
103 | 102 | impcom 407 |
1
⊢ ((𝐹:ℕ⟶(0[,]+∞)
∧ 𝑁 ∈ ℕ)
→ Σ*𝑘
∈ (1...𝑁)(𝐹‘𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)) |