Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimdecfgtioc Structured version   Visualization version   GIF version

Theorem pimdecfgtioc 45202
Description: Given a nonincreasing function, the preimage of an unbounded above, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimdecfgtioc.x 𝑥𝜑
pimdecfgtioc.a (𝜑𝐴 ⊆ ℝ)
pimdecfgtioc.f (𝜑𝐹:𝐴⟶ℝ*)
pimdecfgtioc.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
pimdecfgtioc.r (𝜑𝑅 ∈ ℝ*)
pimdecfgtioc.y 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
pimdecfgtioc.c 𝑆 = sup(𝑌, ℝ*, < )
pimdecfgtioc.e (𝜑𝑆𝑌)
pimdecfgtioc.d 𝐼 = (-∞(,]𝑆)
Assertion
Ref Expression
pimdecfgtioc (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼   𝑥,𝑅   𝑦,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥)   𝐼(𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem pimdecfgtioc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pimdecfgtioc.y . . . . . . 7 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
2 ssrab2 4073 . . . . . . 7 {𝑥𝐴𝑅 < (𝐹𝑥)} ⊆ 𝐴
31, 2eqsstri 4012 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimdecfgtioc.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3988 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimdecfgtioc.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimdecfgtioc.e . . . 4 (𝜑𝑆𝑌)
9 pimdecfgtioc.d . . . 4 𝐼 = (-∞(,]𝑆)
106, 7, 8, 9ressiocsup 44038 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 4228 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimdecfgtioc.x . . . 4 𝑥𝜑
13 elinel2 4192 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 pimdecfgtioc.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
1615adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
17 pimdecfgtioc.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
183, 8sselid 3976 . . . . . . . . . 10 (𝜑𝑆𝐴)
1917, 18ffvelcdmd 7072 . . . . . . . . 9 (𝜑 → (𝐹𝑆) ∈ ℝ*)
2019adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ∈ ℝ*)
2117adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
2221, 14ffvelcdmd 7072 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
238, 1eleqtrdi 2842 . . . . . . . . . . 11 (𝜑𝑆 ∈ {𝑥𝐴𝑅 < (𝐹𝑥)})
24 nfrab1 3450 . . . . . . . . . . . . . . 15 𝑥{𝑥𝐴𝑅 < (𝐹𝑥)}
251, 24nfcxfr 2900 . . . . . . . . . . . . . 14 𝑥𝑌
26 nfcv 2902 . . . . . . . . . . . . . 14 𝑥*
27 nfcv 2902 . . . . . . . . . . . . . 14 𝑥 <
2825, 26, 27nfsup 9428 . . . . . . . . . . . . 13 𝑥sup(𝑌, ℝ*, < )
297, 28nfcxfr 2900 . . . . . . . . . . . 12 𝑥𝑆
30 nfcv 2902 . . . . . . . . . . . 12 𝑥𝐴
31 nfcv 2902 . . . . . . . . . . . . 13 𝑥𝑅
32 nfcv 2902 . . . . . . . . . . . . . 14 𝑥𝐹
3332, 29nffv 6888 . . . . . . . . . . . . 13 𝑥(𝐹𝑆)
3431, 27, 33nfbr 5188 . . . . . . . . . . . 12 𝑥 𝑅 < (𝐹𝑆)
35 fveq2 6878 . . . . . . . . . . . . 13 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹𝑆))
3635breq2d 5153 . . . . . . . . . . . 12 (𝑥 = 𝑆 → (𝑅 < (𝐹𝑥) ↔ 𝑅 < (𝐹𝑆)))
3729, 30, 34, 36elrabf 3675 . . . . . . . . . . 11 (𝑆 ∈ {𝑥𝐴𝑅 < (𝐹𝑥)} ↔ (𝑆𝐴𝑅 < (𝐹𝑆)))
3823, 37sylib 217 . . . . . . . . . 10 (𝜑 → (𝑆𝐴𝑅 < (𝐹𝑆)))
3938simprd 496 . . . . . . . . 9 (𝜑𝑅 < (𝐹𝑆))
4039adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 < (𝐹𝑆))
4118adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑆𝐴)
42 pimdecfgtioc.i . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
4342r19.21bi 3247 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
4414, 43syldan 591 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
4541, 44jca 512 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑆𝐴 ∧ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
46 mnfxr 11253 . . . . . . . . . . 11 -∞ ∈ ℝ*
4746a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
48 ressxr 11240 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
496, 8sseldd 3979 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
5048, 49sselid 3976 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
5150adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
52 elinel1 4191 . . . . . . . . . . . 12 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐼)
5352, 9eleqtrdi 2842 . . . . . . . . . . 11 (𝑥 ∈ (𝐼𝐴) → 𝑥 ∈ (-∞(,]𝑆))
5453adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ (-∞(,]𝑆))
55 iocleub 43987 . . . . . . . . . 10 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑥 ∈ (-∞(,]𝑆)) → 𝑥𝑆)
5647, 51, 54, 55syl3anc 1371 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑆)
57 breq2 5145 . . . . . . . . . . 11 (𝑦 = 𝑆 → (𝑥𝑦𝑥𝑆))
58 fveq2 6878 . . . . . . . . . . . 12 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
5958breq1d 5151 . . . . . . . . . . 11 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑥) ↔ (𝐹𝑆) ≤ (𝐹𝑥)))
6057, 59imbi12d 344 . . . . . . . . . 10 (𝑦 = 𝑆 → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ↔ (𝑥𝑆 → (𝐹𝑆) ≤ (𝐹𝑥))))
6160rspcva 3607 . . . . . . . . 9 ((𝑆𝐴 ∧ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) → (𝑥𝑆 → (𝐹𝑆) ≤ (𝐹𝑥)))
6245, 56, 61sylc 65 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ≤ (𝐹𝑥))
6316, 20, 22, 40, 62xrltletrd 13122 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 < (𝐹𝑥))
6414, 63jca 512 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴𝑅 < (𝐹𝑥)))
651reqabi 3453 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴𝑅 < (𝐹𝑥)))
6664, 65sylibr 233 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
6766ex 413 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
6812, 67ralrimi 3253 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
69 nfv 1917 . . . . 5 𝑥 𝑧 ∈ (𝐼𝐴)
7069nfci 2885 . . . 4 𝑥(𝐼𝐴)
7170, 25dfss3f 3969 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
7268, 71sylibr 233 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
7311, 72eqssd 3995 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wral 3060  {crab 3431  cin 3943  wss 3944   class class class wbr 5141  wf 6528  cfv 6532  (class class class)co 7393  supcsup 9417  cr 11091  -∞cmnf 11228  *cxr 11229   < clt 11230  cle 11231  (,]cioc 13307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-ioc 13311
This theorem is referenced by:  decsmflem  45253
  Copyright terms: Public domain W3C validator