Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimdecfgtioc Structured version   Visualization version   GIF version

Theorem pimdecfgtioc 46827
Description: Given a nonincreasing function, the preimage of an unbounded above, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimdecfgtioc.x 𝑥𝜑
pimdecfgtioc.a (𝜑𝐴 ⊆ ℝ)
pimdecfgtioc.f (𝜑𝐹:𝐴⟶ℝ*)
pimdecfgtioc.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
pimdecfgtioc.r (𝜑𝑅 ∈ ℝ*)
pimdecfgtioc.y 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
pimdecfgtioc.c 𝑆 = sup(𝑌, ℝ*, < )
pimdecfgtioc.e (𝜑𝑆𝑌)
pimdecfgtioc.d 𝐼 = (-∞(,]𝑆)
Assertion
Ref Expression
pimdecfgtioc (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼   𝑥,𝑅   𝑦,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥)   𝐼(𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem pimdecfgtioc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pimdecfgtioc.y . . . . . . 7 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
2 ssrab2 4031 . . . . . . 7 {𝑥𝐴𝑅 < (𝐹𝑥)} ⊆ 𝐴
31, 2eqsstri 3978 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimdecfgtioc.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3942 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimdecfgtioc.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimdecfgtioc.e . . . 4 (𝜑𝑆𝑌)
9 pimdecfgtioc.d . . . 4 𝐼 = (-∞(,]𝑆)
106, 7, 8, 9ressiocsup 45668 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 4192 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimdecfgtioc.x . . . 4 𝑥𝜑
13 elinel2 4153 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 pimdecfgtioc.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
1615adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
17 pimdecfgtioc.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
183, 8sselid 3929 . . . . . . . . . 10 (𝜑𝑆𝐴)
1917, 18ffvelcdmd 7027 . . . . . . . . 9 (𝜑 → (𝐹𝑆) ∈ ℝ*)
2019adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ∈ ℝ*)
2117adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
2221, 14ffvelcdmd 7027 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
238, 1eleqtrdi 2843 . . . . . . . . . . 11 (𝜑𝑆 ∈ {𝑥𝐴𝑅 < (𝐹𝑥)})
24 nfrab1 3417 . . . . . . . . . . . . . . 15 𝑥{𝑥𝐴𝑅 < (𝐹𝑥)}
251, 24nfcxfr 2894 . . . . . . . . . . . . . 14 𝑥𝑌
26 nfcv 2896 . . . . . . . . . . . . . 14 𝑥*
27 nfcv 2896 . . . . . . . . . . . . . 14 𝑥 <
2825, 26, 27nfsup 9345 . . . . . . . . . . . . 13 𝑥sup(𝑌, ℝ*, < )
297, 28nfcxfr 2894 . . . . . . . . . . . 12 𝑥𝑆
30 nfcv 2896 . . . . . . . . . . . 12 𝑥𝐴
31 nfcv 2896 . . . . . . . . . . . . 13 𝑥𝑅
32 nfcv 2896 . . . . . . . . . . . . . 14 𝑥𝐹
3332, 29nffv 6841 . . . . . . . . . . . . 13 𝑥(𝐹𝑆)
3431, 27, 33nfbr 5142 . . . . . . . . . . . 12 𝑥 𝑅 < (𝐹𝑆)
35 fveq2 6831 . . . . . . . . . . . . 13 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹𝑆))
3635breq2d 5107 . . . . . . . . . . . 12 (𝑥 = 𝑆 → (𝑅 < (𝐹𝑥) ↔ 𝑅 < (𝐹𝑆)))
3729, 30, 34, 36elrabf 3641 . . . . . . . . . . 11 (𝑆 ∈ {𝑥𝐴𝑅 < (𝐹𝑥)} ↔ (𝑆𝐴𝑅 < (𝐹𝑆)))
3823, 37sylib 218 . . . . . . . . . 10 (𝜑 → (𝑆𝐴𝑅 < (𝐹𝑆)))
3938simprd 495 . . . . . . . . 9 (𝜑𝑅 < (𝐹𝑆))
4039adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 < (𝐹𝑆))
4118adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑆𝐴)
42 pimdecfgtioc.i . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
4342r19.21bi 3226 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
4414, 43syldan 591 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
4541, 44jca 511 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑆𝐴 ∧ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
46 mnfxr 11179 . . . . . . . . . . 11 -∞ ∈ ℝ*
4746a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
48 ressxr 11166 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
496, 8sseldd 3932 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
5048, 49sselid 3929 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
5150adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
52 elinel1 4152 . . . . . . . . . . . 12 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐼)
5352, 9eleqtrdi 2843 . . . . . . . . . . 11 (𝑥 ∈ (𝐼𝐴) → 𝑥 ∈ (-∞(,]𝑆))
5453adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ (-∞(,]𝑆))
55 iocleub 45617 . . . . . . . . . 10 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑥 ∈ (-∞(,]𝑆)) → 𝑥𝑆)
5647, 51, 54, 55syl3anc 1373 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑆)
57 breq2 5099 . . . . . . . . . . 11 (𝑦 = 𝑆 → (𝑥𝑦𝑥𝑆))
58 fveq2 6831 . . . . . . . . . . . 12 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
5958breq1d 5105 . . . . . . . . . . 11 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑥) ↔ (𝐹𝑆) ≤ (𝐹𝑥)))
6057, 59imbi12d 344 . . . . . . . . . 10 (𝑦 = 𝑆 → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ↔ (𝑥𝑆 → (𝐹𝑆) ≤ (𝐹𝑥))))
6160rspcva 3572 . . . . . . . . 9 ((𝑆𝐴 ∧ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) → (𝑥𝑆 → (𝐹𝑆) ≤ (𝐹𝑥)))
6245, 56, 61sylc 65 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ≤ (𝐹𝑥))
6316, 20, 22, 40, 62xrltletrd 13070 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 < (𝐹𝑥))
6414, 63jca 511 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴𝑅 < (𝐹𝑥)))
651reqabi 3420 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴𝑅 < (𝐹𝑥)))
6664, 65sylibr 234 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
6766ex 412 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
6812, 67ralrimi 3232 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
69 nfv 1915 . . . . 5 𝑥 𝑧 ∈ (𝐼𝐴)
7069nfci 2884 . . . 4 𝑥(𝐼𝐴)
7170, 25dfss3f 3923 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
7268, 71sylibr 234 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
7311, 72eqssd 3949 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2113  wral 3049  {crab 3397  cin 3898  wss 3899   class class class wbr 5095  wf 6485  cfv 6489  (class class class)co 7355  supcsup 9334  cr 11015  -∞cmnf 11154  *cxr 11155   < clt 11156  cle 11157  (,]cioc 13256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-ioc 13260
This theorem is referenced by:  decsmflem  46878
  Copyright terms: Public domain W3C validator