Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimdecfgtioc Structured version   Visualization version   GIF version

Theorem pimdecfgtioc 44203
Description: Given a nonincreasing function, the preimage of an unbounded above, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimdecfgtioc.x 𝑥𝜑
pimdecfgtioc.a (𝜑𝐴 ⊆ ℝ)
pimdecfgtioc.f (𝜑𝐹:𝐴⟶ℝ*)
pimdecfgtioc.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
pimdecfgtioc.r (𝜑𝑅 ∈ ℝ*)
pimdecfgtioc.y 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
pimdecfgtioc.c 𝑆 = sup(𝑌, ℝ*, < )
pimdecfgtioc.e (𝜑𝑆𝑌)
pimdecfgtioc.d 𝐼 = (-∞(,]𝑆)
Assertion
Ref Expression
pimdecfgtioc (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼   𝑥,𝑅   𝑦,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥)   𝐼(𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem pimdecfgtioc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pimdecfgtioc.y . . . . . . 7 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
2 ssrab2 4017 . . . . . . 7 {𝑥𝐴𝑅 < (𝐹𝑥)} ⊆ 𝐴
31, 2eqsstri 3959 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimdecfgtioc.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3935 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimdecfgtioc.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimdecfgtioc.e . . . 4 (𝜑𝑆𝑌)
9 pimdecfgtioc.d . . . 4 𝐼 = (-∞(,]𝑆)
106, 7, 8, 9ressiocsup 43046 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 4171 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimdecfgtioc.x . . . 4 𝑥𝜑
13 elinel2 4134 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 pimdecfgtioc.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
1615adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
17 pimdecfgtioc.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
183, 8sselid 3923 . . . . . . . . . 10 (𝜑𝑆𝐴)
1917, 18ffvelrnd 6956 . . . . . . . . 9 (𝜑 → (𝐹𝑆) ∈ ℝ*)
2019adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ∈ ℝ*)
2117adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
2221, 14ffvelrnd 6956 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
238, 1eleqtrdi 2850 . . . . . . . . . . 11 (𝜑𝑆 ∈ {𝑥𝐴𝑅 < (𝐹𝑥)})
24 nfrab1 3315 . . . . . . . . . . . . . . 15 𝑥{𝑥𝐴𝑅 < (𝐹𝑥)}
251, 24nfcxfr 2906 . . . . . . . . . . . . . 14 𝑥𝑌
26 nfcv 2908 . . . . . . . . . . . . . 14 𝑥*
27 nfcv 2908 . . . . . . . . . . . . . 14 𝑥 <
2825, 26, 27nfsup 9171 . . . . . . . . . . . . 13 𝑥sup(𝑌, ℝ*, < )
297, 28nfcxfr 2906 . . . . . . . . . . . 12 𝑥𝑆
30 nfcv 2908 . . . . . . . . . . . 12 𝑥𝐴
31 nfcv 2908 . . . . . . . . . . . . 13 𝑥𝑅
32 nfcv 2908 . . . . . . . . . . . . . 14 𝑥𝐹
3332, 29nffv 6778 . . . . . . . . . . . . 13 𝑥(𝐹𝑆)
3431, 27, 33nfbr 5125 . . . . . . . . . . . 12 𝑥 𝑅 < (𝐹𝑆)
35 fveq2 6768 . . . . . . . . . . . . 13 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹𝑆))
3635breq2d 5090 . . . . . . . . . . . 12 (𝑥 = 𝑆 → (𝑅 < (𝐹𝑥) ↔ 𝑅 < (𝐹𝑆)))
3729, 30, 34, 36elrabf 3621 . . . . . . . . . . 11 (𝑆 ∈ {𝑥𝐴𝑅 < (𝐹𝑥)} ↔ (𝑆𝐴𝑅 < (𝐹𝑆)))
3823, 37sylib 217 . . . . . . . . . 10 (𝜑 → (𝑆𝐴𝑅 < (𝐹𝑆)))
3938simprd 495 . . . . . . . . 9 (𝜑𝑅 < (𝐹𝑆))
4039adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 < (𝐹𝑆))
4118adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑆𝐴)
42 pimdecfgtioc.i . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
4342r19.21bi 3134 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
4414, 43syldan 590 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
4541, 44jca 511 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑆𝐴 ∧ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
46 mnfxr 11016 . . . . . . . . . . 11 -∞ ∈ ℝ*
4746a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
48 ressxr 11003 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
496, 8sseldd 3926 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
5048, 49sselid 3923 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
5150adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
52 elinel1 4133 . . . . . . . . . . . 12 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐼)
5352, 9eleqtrdi 2850 . . . . . . . . . . 11 (𝑥 ∈ (𝐼𝐴) → 𝑥 ∈ (-∞(,]𝑆))
5453adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ (-∞(,]𝑆))
55 iocleub 42995 . . . . . . . . . 10 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑥 ∈ (-∞(,]𝑆)) → 𝑥𝑆)
5647, 51, 54, 55syl3anc 1369 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑆)
57 breq2 5082 . . . . . . . . . . 11 (𝑦 = 𝑆 → (𝑥𝑦𝑥𝑆))
58 fveq2 6768 . . . . . . . . . . . 12 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
5958breq1d 5088 . . . . . . . . . . 11 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑥) ↔ (𝐹𝑆) ≤ (𝐹𝑥)))
6057, 59imbi12d 344 . . . . . . . . . 10 (𝑦 = 𝑆 → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ↔ (𝑥𝑆 → (𝐹𝑆) ≤ (𝐹𝑥))))
6160rspcva 3558 . . . . . . . . 9 ((𝑆𝐴 ∧ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) → (𝑥𝑆 → (𝐹𝑆) ≤ (𝐹𝑥)))
6245, 56, 61sylc 65 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ≤ (𝐹𝑥))
6316, 20, 22, 40, 62xrltletrd 12877 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 < (𝐹𝑥))
6414, 63jca 511 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴𝑅 < (𝐹𝑥)))
651rabeq2i 3420 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴𝑅 < (𝐹𝑥)))
6664, 65sylibr 233 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
6766ex 412 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
6812, 67ralrimi 3141 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
69 nfv 1920 . . . . 5 𝑥 𝑧 ∈ (𝐼𝐴)
7069nfci 2891 . . . 4 𝑥(𝐼𝐴)
7170, 25dfss3f 3916 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
7268, 71sylibr 233 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
7311, 72eqssd 3942 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1789  wcel 2109  wral 3065  {crab 3069  cin 3890  wss 3891   class class class wbr 5078  wf 6426  cfv 6430  (class class class)co 7268  supcsup 9160  cr 10854  -∞cmnf 10991  *cxr 10992   < clt 10993  cle 10994  (,]cioc 13062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-ioc 13066
This theorem is referenced by:  decsmflem  44252
  Copyright terms: Public domain W3C validator