Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimdecfgtioc Structured version   Visualization version   GIF version

Theorem pimdecfgtioc 42870
Description: Given a nonincreasing function, the preimage of an unbounded above, open interval, when the supremum of the preimage belongs to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimdecfgtioc.x 𝑥𝜑
pimdecfgtioc.a (𝜑𝐴 ⊆ ℝ)
pimdecfgtioc.f (𝜑𝐹:𝐴⟶ℝ*)
pimdecfgtioc.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
pimdecfgtioc.r (𝜑𝑅 ∈ ℝ*)
pimdecfgtioc.y 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
pimdecfgtioc.c 𝑆 = sup(𝑌, ℝ*, < )
pimdecfgtioc.e (𝜑𝑆𝑌)
pimdecfgtioc.d 𝐼 = (-∞(,]𝑆)
Assertion
Ref Expression
pimdecfgtioc (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼   𝑥,𝑅   𝑦,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥)   𝐼(𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem pimdecfgtioc
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pimdecfgtioc.y . . . . . . 7 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
2 ssrab2 4053 . . . . . . 7 {𝑥𝐴𝑅 < (𝐹𝑥)} ⊆ 𝐴
31, 2eqsstri 3998 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimdecfgtioc.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3974 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimdecfgtioc.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimdecfgtioc.e . . . 4 (𝜑𝑆𝑌)
9 pimdecfgtioc.d . . . 4 𝐼 = (-∞(,]𝑆)
106, 7, 8, 9ressiocsup 41706 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 4206 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimdecfgtioc.x . . . 4 𝑥𝜑
13 elinel2 4170 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 pimdecfgtioc.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
1615adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
17 pimdecfgtioc.f . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
183, 8sseldi 3962 . . . . . . . . . 10 (𝜑𝑆𝐴)
1917, 18ffvelrnd 6844 . . . . . . . . 9 (𝜑 → (𝐹𝑆) ∈ ℝ*)
2019adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ∈ ℝ*)
2117adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
2221, 14ffvelrnd 6844 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
238, 1eleqtrdi 2920 . . . . . . . . . . 11 (𝜑𝑆 ∈ {𝑥𝐴𝑅 < (𝐹𝑥)})
24 nfrab1 3382 . . . . . . . . . . . . . . 15 𝑥{𝑥𝐴𝑅 < (𝐹𝑥)}
251, 24nfcxfr 2972 . . . . . . . . . . . . . 14 𝑥𝑌
26 nfcv 2974 . . . . . . . . . . . . . 14 𝑥*
27 nfcv 2974 . . . . . . . . . . . . . 14 𝑥 <
2825, 26, 27nfsup 8903 . . . . . . . . . . . . 13 𝑥sup(𝑌, ℝ*, < )
297, 28nfcxfr 2972 . . . . . . . . . . . 12 𝑥𝑆
30 nfcv 2974 . . . . . . . . . . . 12 𝑥𝐴
31 nfcv 2974 . . . . . . . . . . . . 13 𝑥𝑅
32 nfcv 2974 . . . . . . . . . . . . . 14 𝑥𝐹
3332, 29nffv 6673 . . . . . . . . . . . . 13 𝑥(𝐹𝑆)
3431, 27, 33nfbr 5104 . . . . . . . . . . . 12 𝑥 𝑅 < (𝐹𝑆)
35 fveq2 6663 . . . . . . . . . . . . 13 (𝑥 = 𝑆 → (𝐹𝑥) = (𝐹𝑆))
3635breq2d 5069 . . . . . . . . . . . 12 (𝑥 = 𝑆 → (𝑅 < (𝐹𝑥) ↔ 𝑅 < (𝐹𝑆)))
3729, 30, 34, 36elrabf 3673 . . . . . . . . . . 11 (𝑆 ∈ {𝑥𝐴𝑅 < (𝐹𝑥)} ↔ (𝑆𝐴𝑅 < (𝐹𝑆)))
3823, 37sylib 219 . . . . . . . . . 10 (𝜑 → (𝑆𝐴𝑅 < (𝐹𝑆)))
3938simprd 496 . . . . . . . . 9 (𝜑𝑅 < (𝐹𝑆))
4039adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 < (𝐹𝑆))
4118adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑆𝐴)
42 pimdecfgtioc.i . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
4342r19.21bi 3205 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
4414, 43syldan 591 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
4541, 44jca 512 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑆𝐴 ∧ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))))
46 mnfxr 10686 . . . . . . . . . . 11 -∞ ∈ ℝ*
4746a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
48 ressxr 10673 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
496, 8sseldd 3965 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℝ)
5048, 49sseldi 3962 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
5150adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
52 elinel1 4169 . . . . . . . . . . . 12 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐼)
5352, 9eleqtrdi 2920 . . . . . . . . . . 11 (𝑥 ∈ (𝐼𝐴) → 𝑥 ∈ (-∞(,]𝑆))
5453adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ (-∞(,]𝑆))
55 iocleub 41654 . . . . . . . . . 10 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑥 ∈ (-∞(,]𝑆)) → 𝑥𝑆)
5647, 51, 54, 55syl3anc 1363 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑆)
57 breq2 5061 . . . . . . . . . . 11 (𝑦 = 𝑆 → (𝑥𝑦𝑥𝑆))
58 fveq2 6663 . . . . . . . . . . . 12 (𝑦 = 𝑆 → (𝐹𝑦) = (𝐹𝑆))
5958breq1d 5067 . . . . . . . . . . 11 (𝑦 = 𝑆 → ((𝐹𝑦) ≤ (𝐹𝑥) ↔ (𝐹𝑆) ≤ (𝐹𝑥)))
6057, 59imbi12d 346 . . . . . . . . . 10 (𝑦 = 𝑆 → ((𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ↔ (𝑥𝑆 → (𝐹𝑆) ≤ (𝐹𝑥))))
6160rspcva 3618 . . . . . . . . 9 ((𝑆𝐴 ∧ ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥))) → (𝑥𝑆 → (𝐹𝑆) ≤ (𝐹𝑥)))
6245, 56, 61sylc 65 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑆) ≤ (𝐹𝑥))
6316, 20, 22, 40, 62xrltletrd 12542 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 < (𝐹𝑥))
6414, 63jca 512 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴𝑅 < (𝐹𝑥)))
651rabeq2i 3485 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴𝑅 < (𝐹𝑥)))
6664, 65sylibr 235 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
6766ex 413 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
6812, 67ralrimi 3213 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
69 nfv 1906 . . . . 5 𝑥 𝑧 ∈ (𝐼𝐴)
7069nfci 2961 . . . 4 𝑥(𝐼𝐴)
7170, 25dfss3f 3956 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
7268, 71sylibr 235 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
7311, 72eqssd 3981 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wnf 1775  wcel 2105  wral 3135  {crab 3139  cin 3932  wss 3933   class class class wbr 5057  wf 6344  cfv 6348  (class class class)co 7145  supcsup 8892  cr 10524  -∞cmnf 10661  *cxr 10662   < clt 10663  cle 10664  (,]cioc 12727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-ioc 12731
This theorem is referenced by:  decsmflem  42919
  Copyright terms: Public domain W3C validator