| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climinff | Structured version Visualization version GIF version | ||
| Description: A version of climinf 45611 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
| Ref | Expression |
|---|---|
| climinff.1 | ⊢ Ⅎ𝑘𝜑 |
| climinff.2 | ⊢ Ⅎ𝑘𝐹 |
| climinff.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climinff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climinff.5 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| climinff.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
| climinff.7 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climinff | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climinff.3 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climinff.4 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climinff.5 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 4 | climinff.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 5 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
| 6 | 4, 5 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 7 | climinff.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
| 8 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑘(𝑗 + 1) | |
| 9 | 7, 8 | nffv 6871 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) |
| 10 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
| 11 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
| 12 | 7, 11 | nffv 6871 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 13 | 9, 10, 12 | nfbr 5157 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗) |
| 14 | 6, 13 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
| 15 | eleq1w 2812 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
| 16 | 15 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 17 | fvoveq1 7413 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1))) | |
| 18 | fveq2 6861 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 19 | 17, 18 | breq12d 5123 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗))) |
| 20 | 16, 19 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)))) |
| 21 | climinff.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
| 22 | 14, 20, 21 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
| 23 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑘ℝ | |
| 24 | 5 | nfci 2880 | . . . . . 6 ⊢ Ⅎ𝑘𝑍 |
| 25 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑘𝑥 | |
| 26 | 25, 10, 12 | nfbr 5157 | . . . . . 6 ⊢ Ⅎ𝑘 𝑥 ≤ (𝐹‘𝑗) |
| 27 | 24, 26 | nfralw 3287 | . . . . 5 ⊢ Ⅎ𝑘∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) |
| 28 | 23, 27 | nfrexw 3289 | . . . 4 ⊢ Ⅎ𝑘∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) |
| 29 | 4, 28 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘(𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
| 30 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑗 𝑥 ≤ (𝐹‘𝑘) | |
| 31 | 18 | breq2d 5122 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑥 ≤ (𝐹‘𝑘) ↔ 𝑥 ≤ (𝐹‘𝑗))) |
| 32 | 30, 26, 31 | cbvralw 3282 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑗 → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
| 34 | 33 | rexbidv 3158 | . . . 4 ⊢ (𝑘 = 𝑗 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
| 35 | 34 | imbi2d 340 | . . 3 ⊢ (𝑘 = 𝑗 → ((𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ↔ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
| 36 | climinff.7 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) | |
| 37 | 29, 35, 36 | chvarfv 2241 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
| 38 | 1, 2, 3, 22, 37 | climinf 45611 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ran crn 5642 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 infcinf 9399 ℝcr 11074 1c1 11076 + caddc 11078 < clt 11215 ≤ cle 11216 ℤcz 12536 ℤ≥cuz 12800 ⇝ cli 15457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |