![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climinff | Structured version Visualization version GIF version |
Description: A version of climinf 44907 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
Ref | Expression |
---|---|
climinff.1 | ⊢ Ⅎ𝑘𝜑 |
climinff.2 | ⊢ Ⅎ𝑘𝐹 |
climinff.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climinff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climinff.5 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climinff.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
climinff.7 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climinff | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climinff.3 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climinff.4 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climinff.5 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | climinff.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
5 | nfv 1910 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
6 | 4, 5 | nfan 1895 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
7 | climinff.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
8 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑘(𝑗 + 1) | |
9 | 7, 8 | nffv 6901 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) |
10 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
11 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
12 | 7, 11 | nffv 6901 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
13 | 9, 10, 12 | nfbr 5189 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗) |
14 | 6, 13 | nfim 1892 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
15 | eleq1w 2811 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
16 | 15 | anbi2d 628 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | fvoveq1 7437 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1))) | |
18 | fveq2 6891 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
19 | 17, 18 | breq12d 5155 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗))) |
20 | 16, 19 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)))) |
21 | climinff.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
22 | 14, 20, 21 | chvarfv 2226 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
23 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑘ℝ | |
24 | 5 | nfci 2881 | . . . . . 6 ⊢ Ⅎ𝑘𝑍 |
25 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑘𝑥 | |
26 | 25, 10, 12 | nfbr 5189 | . . . . . 6 ⊢ Ⅎ𝑘 𝑥 ≤ (𝐹‘𝑗) |
27 | 24, 26 | nfralw 3303 | . . . . 5 ⊢ Ⅎ𝑘∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) |
28 | 23, 27 | nfrexw 3305 | . . . 4 ⊢ Ⅎ𝑘∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) |
29 | 4, 28 | nfim 1892 | . . 3 ⊢ Ⅎ𝑘(𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
30 | nfv 1910 | . . . . . . 7 ⊢ Ⅎ𝑗 𝑥 ≤ (𝐹‘𝑘) | |
31 | 18 | breq2d 5154 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑥 ≤ (𝐹‘𝑘) ↔ 𝑥 ≤ (𝐹‘𝑗))) |
32 | 30, 26, 31 | cbvralw 3298 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
33 | 32 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑗 → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
34 | 33 | rexbidv 3173 | . . . 4 ⊢ (𝑘 = 𝑗 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
35 | 34 | imbi2d 340 | . . 3 ⊢ (𝑘 = 𝑗 → ((𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ↔ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
36 | climinff.7 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) | |
37 | 29, 35, 36 | chvarfv 2226 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
38 | 1, 2, 3, 22, 37 | climinf 44907 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2878 ∀wral 3056 ∃wrex 3065 class class class wbr 5142 ran crn 5673 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 infcinf 9450 ℝcr 11123 1c1 11125 + caddc 11127 < clt 11264 ≤ cle 11265 ℤcz 12574 ℤ≥cuz 12838 ⇝ cli 15446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-inf 9452 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-n0 12489 df-z 12575 df-uz 12839 df-rp 12993 df-fz 13503 df-seq 13985 df-exp 14045 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-clim 15450 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |