| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climinff | Structured version Visualization version GIF version | ||
| Description: A version of climinf 45591 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
| Ref | Expression |
|---|---|
| climinff.1 | ⊢ Ⅎ𝑘𝜑 |
| climinff.2 | ⊢ Ⅎ𝑘𝐹 |
| climinff.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climinff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climinff.5 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| climinff.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
| climinff.7 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climinff | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climinff.3 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climinff.4 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climinff.5 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 4 | climinff.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 5 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
| 6 | 4, 5 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 7 | climinff.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
| 8 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘(𝑗 + 1) | |
| 9 | 7, 8 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) |
| 10 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
| 11 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
| 12 | 7, 11 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 13 | 9, 10, 12 | nfbr 5139 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗) |
| 14 | 6, 13 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
| 15 | eleq1w 2811 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
| 16 | 15 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 17 | fvoveq1 7372 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1))) | |
| 18 | fveq2 6822 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 19 | 17, 18 | breq12d 5105 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗))) |
| 20 | 16, 19 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)))) |
| 21 | climinff.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
| 22 | 14, 20, 21 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
| 23 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘ℝ | |
| 24 | 5 | nfci 2879 | . . . . . 6 ⊢ Ⅎ𝑘𝑍 |
| 25 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑘𝑥 | |
| 26 | 25, 10, 12 | nfbr 5139 | . . . . . 6 ⊢ Ⅎ𝑘 𝑥 ≤ (𝐹‘𝑗) |
| 27 | 24, 26 | nfralw 3276 | . . . . 5 ⊢ Ⅎ𝑘∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) |
| 28 | 23, 27 | nfrexw 3277 | . . . 4 ⊢ Ⅎ𝑘∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) |
| 29 | 4, 28 | nfim 1896 | . . 3 ⊢ Ⅎ𝑘(𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
| 30 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑗 𝑥 ≤ (𝐹‘𝑘) | |
| 31 | 18 | breq2d 5104 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑥 ≤ (𝐹‘𝑘) ↔ 𝑥 ≤ (𝐹‘𝑗))) |
| 32 | 30, 26, 31 | cbvralw 3271 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑗 → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
| 34 | 33 | rexbidv 3153 | . . . 4 ⊢ (𝑘 = 𝑗 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
| 35 | 34 | imbi2d 340 | . . 3 ⊢ (𝑘 = 𝑗 → ((𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ↔ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
| 36 | climinff.7 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) | |
| 37 | 29, 35, 36 | chvarfv 2241 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
| 38 | 1, 2, 3, 22, 37 | climinf 45591 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 ∃wrex 3053 class class class wbr 5092 ran crn 5620 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 infcinf 9331 ℝcr 11008 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 ℤcz 12471 ℤ≥cuz 12735 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |