![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climinff | Structured version Visualization version GIF version |
Description: A version of climinf 45527 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.) |
Ref | Expression |
---|---|
climinff.1 | ⊢ Ⅎ𝑘𝜑 |
climinff.2 | ⊢ Ⅎ𝑘𝐹 |
climinff.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climinff.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climinff.5 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climinff.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
climinff.7 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climinff | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climinff.3 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climinff.4 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climinff.5 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
4 | climinff.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
5 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
6 | 4, 5 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
7 | climinff.2 | . . . . . 6 ⊢ Ⅎ𝑘𝐹 | |
8 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑘(𝑗 + 1) | |
9 | 7, 8 | nffv 6930 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) |
10 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑘 ≤ | |
11 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑘𝑗 | |
12 | 7, 11 | nffv 6930 | . . . . 5 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
13 | 9, 10, 12 | nfbr 5213 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗) |
14 | 6, 13 | nfim 1895 | . . 3 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
15 | eleq1w 2827 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
16 | 15 | anbi2d 629 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
17 | fvoveq1 7471 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑗 + 1))) | |
18 | fveq2 6920 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
19 | 17, 18 | breq12d 5179 | . . . 4 ⊢ (𝑘 = 𝑗 → ((𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘) ↔ (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗))) |
20 | 16, 19 | imbi12d 344 | . . 3 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)))) |
21 | climinff.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
22 | 14, 20, 21 | chvarfv 2241 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘(𝑗 + 1)) ≤ (𝐹‘𝑗)) |
23 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑘ℝ | |
24 | 5 | nfci 2896 | . . . . . 6 ⊢ Ⅎ𝑘𝑍 |
25 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑘𝑥 | |
26 | 25, 10, 12 | nfbr 5213 | . . . . . 6 ⊢ Ⅎ𝑘 𝑥 ≤ (𝐹‘𝑗) |
27 | 24, 26 | nfralw 3317 | . . . . 5 ⊢ Ⅎ𝑘∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) |
28 | 23, 27 | nfrexw 3319 | . . . 4 ⊢ Ⅎ𝑘∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗) |
29 | 4, 28 | nfim 1895 | . . 3 ⊢ Ⅎ𝑘(𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
30 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑗 𝑥 ≤ (𝐹‘𝑘) | |
31 | 18 | breq2d 5178 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑥 ≤ (𝐹‘𝑘) ↔ 𝑥 ≤ (𝐹‘𝑗))) |
32 | 30, 26, 31 | cbvralw 3312 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
33 | 32 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑗 → (∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
34 | 33 | rexbidv 3185 | . . . 4 ⊢ (𝑘 = 𝑗 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘) ↔ ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗))) |
35 | 34 | imbi2d 340 | . . 3 ⊢ (𝑘 = 𝑗 → ((𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) ↔ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)))) |
36 | climinff.7 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑘)) | |
37 | 29, 35, 36 | chvarfv 2241 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 𝑥 ≤ (𝐹‘𝑗)) |
38 | 1, 2, 3, 22, 37 | climinf 45527 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 ran crn 5701 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 infcinf 9510 ℝcr 11183 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 ℤcz 12639 ℤ≥cuz 12903 ⇝ cli 15530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |