Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimfvre Structured version   Visualization version   GIF version

Theorem fnlimfvre 45656
Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimfvre.p 𝑚𝜑
fnlimfvre.m 𝑚𝐹
fnlimfvre.n 𝑥𝐹
fnlimfvre.z 𝑍 = (ℤ𝑀)
fnlimfvre.f ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimfvre.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimfvre.x (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimfvre (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
Distinct variable groups:   𝑛,𝐹   𝑚,𝑋,𝑛,𝑥   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem fnlimfvre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fnlimfvre.x . . 3 (𝜑𝑋𝐷)
2 fnlimfvre.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 nfcv 2891 . . . . . . . 8 𝑥𝑍
4 nfcv 2891 . . . . . . . . 9 𝑥(ℤ𝑛)
5 fnlimfvre.n . . . . . . . . . . 11 𝑥𝐹
6 nfcv 2891 . . . . . . . . . . 11 𝑥𝑚
75, 6nffv 6836 . . . . . . . . . 10 𝑥(𝐹𝑚)
87nfdm 5897 . . . . . . . . 9 𝑥dom (𝐹𝑚)
94, 8nfiin 4977 . . . . . . . 8 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
103, 9nfiun 4976 . . . . . . 7 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1110ssrab2f 45095 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
122, 11eqsstri 3984 . . . . 5 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1312sseli 3933 . . . 4 (𝑋𝐷𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14 eliun 4948 . . . 4 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1513, 14sylib 218 . . 3 (𝑋𝐷 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
161, 15syl 17 . 2 (𝜑 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
17 nfv 1914 . . 3 𝑛𝜑
18 nfv 1914 . . 3 𝑛( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ
19 fnlimfvre.p . . . . . . 7 𝑚𝜑
20 nfv 1914 . . . . . . 7 𝑚 𝑛𝑍
21 nfcv 2891 . . . . . . . 8 𝑚𝑋
22 nfii1 4982 . . . . . . . 8 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2321, 22nfel 2906 . . . . . . 7 𝑚 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2419, 20, 23nf3an 1901 . . . . . 6 𝑚(𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
25 uzssz 12774 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
26 fnlimfvre.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
2726eleq2i 2820 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
2827biimpi 216 . . . . . . . 8 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
2925, 28sselid 3935 . . . . . . 7 (𝑛𝑍𝑛 ∈ ℤ)
30293ad2ant2 1134 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ ℤ)
31 eqid 2729 . . . . . 6 (ℤ𝑛) = (ℤ𝑛)
3226fvexi 6840 . . . . . . 7 𝑍 ∈ V
3332a1i 11 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑍 ∈ V)
3426uztrn2 12772 . . . . . . . 8 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
3534ssd 45058 . . . . . . 7 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
36353ad2ant2 1134 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ 𝑍)
37 fvexd 6841 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
38 fvexd 6841 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ∈ V)
39 ssidd 3961 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ (ℤ𝑛))
40 fvexd 6841 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
41 eqidd 2730 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑋))
4224, 30, 31, 33, 36, 37, 38, 39, 40, 41climfveqmpt 45653 . . . . 5 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) = ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
432eleq2i 2820 . . . . . . . . . . . . 13 (𝑋𝐷𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
4443biimpi 216 . . . . . . . . . . . 12 (𝑋𝐷𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
45 nfcv 2891 . . . . . . . . . . . . . . 15 𝑥𝑋
467, 45nffv 6836 . . . . . . . . . . . . . . . . 17 𝑥((𝐹𝑚)‘𝑋)
473, 46nfmpt 5193 . . . . . . . . . . . . . . . 16 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
48 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑥dom ⇝
4947, 48nfel 2906 . . . . . . . . . . . . . . 15 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝
50 fveq2 6826 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑋))
5150mpteq2dv 5189 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
5251eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5345, 10, 49, 52elrabf 3646 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ↔ (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5453biimpi 216 . . . . . . . . . . . . 13 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5554simprd 495 . . . . . . . . . . . 12 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
5644, 55syl 17 . . . . . . . . . . 11 (𝑋𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
5756adantr 480 . . . . . . . . . 10 ((𝑋𝐷𝑛𝑍) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
58 nfmpt1 5194 . . . . . . . . . . . . . . . 16 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
59 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑚dom ⇝
6058, 59nfel 2906 . . . . . . . . . . . . . . 15 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
61 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑚 𝑗𝑍
6261nfci 2879 . . . . . . . . . . . . . . . 16 𝑚𝑍
6362, 22nfiun 4976 . . . . . . . . . . . . . . 15 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6460, 63nfrabw 3434 . . . . . . . . . . . . . 14 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
652, 64nfcxfr 2889 . . . . . . . . . . . . 13 𝑚𝐷
6621, 65nfel 2906 . . . . . . . . . . . 12 𝑚 𝑋𝐷
6766, 20nfan 1899 . . . . . . . . . . 11 𝑚(𝑋𝐷𝑛𝑍)
6829adantl 481 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → 𝑛 ∈ ℤ)
6932a1i 11 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → 𝑍 ∈ V)
7035adantl 481 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
71 fvexd 6841 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
72 fvexd 6841 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ∈ V)
73 ssidd 3961 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ⊆ (ℤ𝑛))
74 fvexd 6841 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
75 eqidd 2730 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑋))
7667, 68, 31, 69, 70, 71, 72, 73, 74, 75climeldmeqmpt 45650 . . . . . . . . . 10 ((𝑋𝐷𝑛𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
7757, 76mpbid 232 . . . . . . . . 9 ((𝑋𝐷𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
78 climdm 15479 . . . . . . . . 9 ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
7977, 78sylib 218 . . . . . . . 8 ((𝑋𝐷𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
801, 79sylan 580 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
81803adant3 1132 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
82 simpl1 1192 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝜑)
83 simpl2 1193 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑛𝑍)
84 nfcv 2891 . . . . . . . . . . . . 13 𝑗dom (𝐹𝑚)
85 fnlimfvre.m . . . . . . . . . . . . . . 15 𝑚𝐹
86 nfcv 2891 . . . . . . . . . . . . . . 15 𝑚𝑗
8785, 86nffv 6836 . . . . . . . . . . . . . 14 𝑚(𝐹𝑗)
8887nfdm 5897 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑗)
89 fveq2 6826 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
9089dmeqd 5852 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
9184, 88, 90cbviin 4989 . . . . . . . . . . . 12 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗)
9291eleq2i 2820 . . . . . . . . . . 11 (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
9392biimpi 216 . . . . . . . . . 10 (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
9493adantr 480 . . . . . . . . 9 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
95 simpr 484 . . . . . . . . 9 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗 ∈ (ℤ𝑛))
96 eliinid 45089 . . . . . . . . 9 ((𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
9794, 95, 96syl2anc 584 . . . . . . . 8 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
98973ad2antl3 1188 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
99 simpr 484 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗 ∈ (ℤ𝑛))
100 id 22 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑛) → 𝑗 ∈ (ℤ𝑛))
101 fvexd 6841 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑛) → ((𝐹𝑗)‘𝑋) ∈ V)
10287, 21nffv 6836 . . . . . . . . . . 11 𝑚((𝐹𝑗)‘𝑋)
10389fveq1d 6828 . . . . . . . . . . 11 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑗)‘𝑋))
104 eqid 2729 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
10586, 102, 103, 104fvmptf 6955 . . . . . . . . . 10 ((𝑗 ∈ (ℤ𝑛) ∧ ((𝐹𝑗)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
106100, 101, 105syl2anc 584 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑛) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
107106adantl 481 . . . . . . . 8 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
108 simpll 766 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝜑)
10934adantll 714 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
11019, 61nfan 1899 . . . . . . . . . . . . 13 𝑚(𝜑𝑗𝑍)
111 nfcv 2891 . . . . . . . . . . . . . 14 𝑚
11287, 88, 111nff 6652 . . . . . . . . . . . . 13 𝑚(𝐹𝑗):dom (𝐹𝑗)⟶ℝ
113110, 112nfim 1896 . . . . . . . . . . . 12 𝑚((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
114 eleq1w 2811 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝑚𝑍𝑗𝑍))
115114anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝜑𝑚𝑍) ↔ (𝜑𝑗𝑍)))
11689, 90feq12d 6644 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝐹𝑚):dom (𝐹𝑚)⟶ℝ ↔ (𝐹𝑗):dom (𝐹𝑗)⟶ℝ))
117115, 116imbi12d 344 . . . . . . . . . . . 12 (𝑚 = 𝑗 → (((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)))
118 fnlimfvre.f . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
119113, 117, 118chvarfv 2241 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
120108, 109, 119syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
1211203adantl3 1169 . . . . . . . . 9 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
122 simpl3 1194 . . . . . . . . 9 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
123121, 122ffvelcdmd 7023 . . . . . . . 8 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝐹𝑗)‘𝑋) ∈ ℝ)
124107, 123eqeltrd 2828 . . . . . . 7 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) ∈ ℝ)
12582, 83, 98, 99, 124syl31anc 1375 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) ∈ ℝ)
12631, 30, 81, 125climrecl 15508 . . . . 5 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
12742, 126eqeltrd 2828 . . . 4 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
1281273exp 1119 . . 3 (𝜑 → (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)))
12917, 18, 128rexlimd 3236 . 2 (𝜑 → (∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ))
13016, 129mpd 15 1 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wrex 3053  {crab 3396  Vcvv 3438  wss 3905   ciun 4944   ciin 4945   class class class wbr 5095  cmpt 5176  dom cdm 5623  wf 6482  cfv 6486  cr 11027  cz 12489  cuz 12753  cli 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fl 13714  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414
This theorem is referenced by:  fnlimfvre2  45659  fnlimf  45660  smflimlem4  46756  smflim  46759
  Copyright terms: Public domain W3C validator