Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimfvre Structured version   Visualization version   GIF version

Theorem fnlimfvre 42316
Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimfvre.p 𝑚𝜑
fnlimfvre.m 𝑚𝐹
fnlimfvre.n 𝑥𝐹
fnlimfvre.z 𝑍 = (ℤ𝑀)
fnlimfvre.f ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimfvre.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimfvre.x (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimfvre (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
Distinct variable groups:   𝑛,𝐹   𝑚,𝑋,𝑛,𝑥   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem fnlimfvre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fnlimfvre.x . . 3 (𝜑𝑋𝐷)
2 fnlimfvre.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 nfcv 2955 . . . . . . . 8 𝑥𝑍
4 nfcv 2955 . . . . . . . . 9 𝑥(ℤ𝑛)
5 fnlimfvre.n . . . . . . . . . . 11 𝑥𝐹
6 nfcv 2955 . . . . . . . . . . 11 𝑥𝑚
75, 6nffv 6655 . . . . . . . . . 10 𝑥(𝐹𝑚)
87nfdm 5787 . . . . . . . . 9 𝑥dom (𝐹𝑚)
94, 8nfiin 4912 . . . . . . . 8 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
103, 9nfiun 4911 . . . . . . 7 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1110ssrab2f 41752 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
122, 11eqsstri 3949 . . . . 5 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1312sseli 3911 . . . 4 (𝑋𝐷𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14 eliun 4885 . . . 4 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1513, 14sylib 221 . . 3 (𝑋𝐷 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
161, 15syl 17 . 2 (𝜑 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
17 nfv 1915 . . 3 𝑛𝜑
18 nfv 1915 . . 3 𝑛( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ
19 fnlimfvre.p . . . . . . 7 𝑚𝜑
20 nfv 1915 . . . . . . 7 𝑚 𝑛𝑍
21 nfcv 2955 . . . . . . . 8 𝑚𝑋
22 nfii1 4916 . . . . . . . 8 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2321, 22nfel 2969 . . . . . . 7 𝑚 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2419, 20, 23nf3an 1902 . . . . . 6 𝑚(𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
25 uzssz 12252 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
26 fnlimfvre.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
2726eleq2i 2881 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
2827biimpi 219 . . . . . . . 8 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
2925, 28sseldi 3913 . . . . . . 7 (𝑛𝑍𝑛 ∈ ℤ)
30293ad2ant2 1131 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ ℤ)
31 eqid 2798 . . . . . 6 (ℤ𝑛) = (ℤ𝑛)
3226fvexi 6659 . . . . . . 7 𝑍 ∈ V
3332a1i 11 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑍 ∈ V)
3426uztrn2 12250 . . . . . . . 8 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
3534ssd 41716 . . . . . . 7 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
36353ad2ant2 1131 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ 𝑍)
37 fvexd 6660 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
38 fvexd 6660 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ∈ V)
39 ssidd 3938 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ (ℤ𝑛))
40 fvexd 6660 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
41 eqidd 2799 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑋))
4224, 30, 31, 33, 36, 37, 38, 39, 40, 41climfveqmpt 42313 . . . . 5 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) = ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
432eleq2i 2881 . . . . . . . . . . . . 13 (𝑋𝐷𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
4443biimpi 219 . . . . . . . . . . . 12 (𝑋𝐷𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
45 nfcv 2955 . . . . . . . . . . . . . . 15 𝑥𝑋
467, 45nffv 6655 . . . . . . . . . . . . . . . . 17 𝑥((𝐹𝑚)‘𝑋)
473, 46nfmpt 5127 . . . . . . . . . . . . . . . 16 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
48 nfcv 2955 . . . . . . . . . . . . . . . 16 𝑥dom ⇝
4947, 48nfel 2969 . . . . . . . . . . . . . . 15 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝
50 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑋))
5150mpteq2dv 5126 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
5251eleq1d 2874 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5345, 10, 49, 52elrabf 3624 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ↔ (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5453biimpi 219 . . . . . . . . . . . . 13 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5554simprd 499 . . . . . . . . . . . 12 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
5644, 55syl 17 . . . . . . . . . . 11 (𝑋𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
5756adantr 484 . . . . . . . . . 10 ((𝑋𝐷𝑛𝑍) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
58 nfmpt1 5128 . . . . . . . . . . . . . . . 16 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
59 nfcv 2955 . . . . . . . . . . . . . . . 16 𝑚dom ⇝
6058, 59nfel 2969 . . . . . . . . . . . . . . 15 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
61 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑚 𝑗𝑍
6261nfci 2939 . . . . . . . . . . . . . . . 16 𝑚𝑍
6362, 22nfiun 4911 . . . . . . . . . . . . . . 15 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6460, 63nfrabw 3338 . . . . . . . . . . . . . 14 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
652, 64nfcxfr 2953 . . . . . . . . . . . . 13 𝑚𝐷
6621, 65nfel 2969 . . . . . . . . . . . 12 𝑚 𝑋𝐷
6766, 20nfan 1900 . . . . . . . . . . 11 𝑚(𝑋𝐷𝑛𝑍)
6829adantl 485 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → 𝑛 ∈ ℤ)
6932a1i 11 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → 𝑍 ∈ V)
7035adantl 485 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
71 fvexd 6660 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
72 fvexd 6660 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ∈ V)
73 ssidd 3938 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ⊆ (ℤ𝑛))
74 fvexd 6660 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
75 eqidd 2799 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑋))
7667, 68, 31, 69, 70, 71, 72, 73, 74, 75climeldmeqmpt 42310 . . . . . . . . . 10 ((𝑋𝐷𝑛𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
7757, 76mpbid 235 . . . . . . . . 9 ((𝑋𝐷𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
78 climdm 14903 . . . . . . . . 9 ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
7977, 78sylib 221 . . . . . . . 8 ((𝑋𝐷𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
801, 79sylan 583 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
81803adant3 1129 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
82 simpl1 1188 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝜑)
83 simpl2 1189 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑛𝑍)
84 nfcv 2955 . . . . . . . . . . . . 13 𝑗dom (𝐹𝑚)
85 fnlimfvre.m . . . . . . . . . . . . . . 15 𝑚𝐹
86 nfcv 2955 . . . . . . . . . . . . . . 15 𝑚𝑗
8785, 86nffv 6655 . . . . . . . . . . . . . 14 𝑚(𝐹𝑗)
8887nfdm 5787 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑗)
89 fveq2 6645 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
9089dmeqd 5738 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
9184, 88, 90cbviin 4924 . . . . . . . . . . . 12 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗)
9291eleq2i 2881 . . . . . . . . . . 11 (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
9392biimpi 219 . . . . . . . . . 10 (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
9493adantr 484 . . . . . . . . 9 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
95 simpr 488 . . . . . . . . 9 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗 ∈ (ℤ𝑛))
96 eliinid 41747 . . . . . . . . 9 ((𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
9794, 95, 96syl2anc 587 . . . . . . . 8 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
98973ad2antl3 1184 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
99 simpr 488 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗 ∈ (ℤ𝑛))
100 id 22 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑛) → 𝑗 ∈ (ℤ𝑛))
101 fvexd 6660 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑛) → ((𝐹𝑗)‘𝑋) ∈ V)
10287, 21nffv 6655 . . . . . . . . . . 11 𝑚((𝐹𝑗)‘𝑋)
10389fveq1d 6647 . . . . . . . . . . 11 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑗)‘𝑋))
104 eqid 2798 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
10586, 102, 103, 104fvmptf 6766 . . . . . . . . . 10 ((𝑗 ∈ (ℤ𝑛) ∧ ((𝐹𝑗)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
106100, 101, 105syl2anc 587 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑛) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
107106adantl 485 . . . . . . . 8 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
108 simpll 766 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝜑)
10934adantll 713 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
11019, 61nfan 1900 . . . . . . . . . . . . 13 𝑚(𝜑𝑗𝑍)
111 nfcv 2955 . . . . . . . . . . . . . 14 𝑚
11287, 88, 111nff 6483 . . . . . . . . . . . . 13 𝑚(𝐹𝑗):dom (𝐹𝑗)⟶ℝ
113110, 112nfim 1897 . . . . . . . . . . . 12 𝑚((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
114 eleq1w 2872 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝑚𝑍𝑗𝑍))
115114anbi2d 631 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝜑𝑚𝑍) ↔ (𝜑𝑗𝑍)))
11689, 90feq12d 6475 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝐹𝑚):dom (𝐹𝑚)⟶ℝ ↔ (𝐹𝑗):dom (𝐹𝑗)⟶ℝ))
117115, 116imbi12d 348 . . . . . . . . . . . 12 (𝑚 = 𝑗 → (((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)))
118 fnlimfvre.f . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
119113, 117, 118chvarfv 2240 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
120108, 109, 119syl2anc 587 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
1211203adantl3 1165 . . . . . . . . 9 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
122 simpl3 1190 . . . . . . . . 9 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
123121, 122ffvelrnd 6829 . . . . . . . 8 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝐹𝑗)‘𝑋) ∈ ℝ)
124107, 123eqeltrd 2890 . . . . . . 7 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) ∈ ℝ)
12582, 83, 98, 99, 124syl31anc 1370 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) ∈ ℝ)
12631, 30, 81, 125climrecl 14932 . . . . 5 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
12742, 126eqeltrd 2890 . . . 4 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
1281273exp 1116 . . 3 (𝜑 → (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)))
12917, 18, 128rexlimd 3276 . 2 (𝜑 → (∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ))
13016, 129mpd 15 1 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wnf 1785  wcel 2111  wnfc 2936  wrex 3107  {crab 3110  Vcvv 3441  wss 3881   ciun 4881   ciin 4882   class class class wbr 5030  cmpt 5110  dom cdm 5519  wf 6320  cfv 6324  cr 10525  cz 11969  cuz 12231  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838
This theorem is referenced by:  fnlimfvre2  42319  fnlimf  42320  smflimlem4  43407  smflim  43410
  Copyright terms: Public domain W3C validator