| Step | Hyp | Ref
| Expression |
| 1 | | fnlimfvre.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| 2 | | fnlimfvre.d |
. . . . . 6
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
| 3 | | nfcv 2898 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑍 |
| 4 | | nfcv 2898 |
. . . . . . . . 9
⊢
Ⅎ𝑥(ℤ≥‘𝑛) |
| 5 | | fnlimfvre.n |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝐹 |
| 6 | | nfcv 2898 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑚 |
| 7 | 5, 6 | nffv 6886 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝐹‘𝑚) |
| 8 | 7 | nfdm 5931 |
. . . . . . . . 9
⊢
Ⅎ𝑥dom
(𝐹‘𝑚) |
| 9 | 4, 8 | nfiin 5000 |
. . . . . . . 8
⊢
Ⅎ𝑥∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
| 10 | 3, 9 | nfiun 4999 |
. . . . . . 7
⊢
Ⅎ𝑥∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
| 11 | 10 | ssrab2f 45141 |
. . . . . 6
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
| 12 | 2, 11 | eqsstri 4005 |
. . . . 5
⊢ 𝐷 ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
| 13 | 12 | sseli 3954 |
. . . 4
⊢ (𝑋 ∈ 𝐷 → 𝑋 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
| 14 | | eliun 4971 |
. . . 4
⊢ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
| 15 | 13, 14 | sylib 218 |
. . 3
⊢ (𝑋 ∈ 𝐷 → ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
| 16 | 1, 15 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
| 17 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑛𝜑 |
| 18 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑛( ⇝
‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ |
| 19 | | fnlimfvre.p |
. . . . . . 7
⊢
Ⅎ𝑚𝜑 |
| 20 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑚 𝑛 ∈ 𝑍 |
| 21 | | nfcv 2898 |
. . . . . . . 8
⊢
Ⅎ𝑚𝑋 |
| 22 | | nfii1 5005 |
. . . . . . . 8
⊢
Ⅎ𝑚∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
| 23 | 21, 22 | nfel 2913 |
. . . . . . 7
⊢
Ⅎ𝑚 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) |
| 24 | 19, 20, 23 | nf3an 1901 |
. . . . . 6
⊢
Ⅎ𝑚(𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
| 25 | | uzssz 12873 |
. . . . . . . 8
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
| 26 | | fnlimfvre.z |
. . . . . . . . . 10
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 27 | 26 | eleq2i 2826 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) |
| 28 | 27 | biimpi 216 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 29 | 25, 28 | sselid 3956 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
| 30 | 29 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑛 ∈ ℤ) |
| 31 | | eqid 2735 |
. . . . . 6
⊢
(ℤ≥‘𝑛) = (ℤ≥‘𝑛) |
| 32 | 26 | fvexi 6890 |
. . . . . . 7
⊢ 𝑍 ∈ V |
| 33 | 32 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → 𝑍 ∈ V) |
| 34 | 26 | uztrn2 12871 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑗 ∈ 𝑍) |
| 35 | 34 | ssd 45104 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑍 → (ℤ≥‘𝑛) ⊆ 𝑍) |
| 36 | 35 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (ℤ≥‘𝑛) ⊆ 𝑍) |
| 37 | | fvexd 6891 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑚 ∈ 𝑍) → ((𝐹‘𝑚)‘𝑋) ∈ V) |
| 38 | | fvexd 6891 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (ℤ≥‘𝑛) ∈ V) |
| 39 | | ssidd 3982 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (ℤ≥‘𝑛) ⊆
(ℤ≥‘𝑛)) |
| 40 | | fvexd 6891 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑚)‘𝑋) ∈ V) |
| 41 | | eqidd 2736 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑚)‘𝑋) = ((𝐹‘𝑚)‘𝑋)) |
| 42 | 24, 30, 31, 33, 36, 37, 38, 39, 40, 41 | climfveqmpt 45700 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) = ( ⇝ ‘(𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 43 | 2 | eleq2i 2826 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝐷 ↔ 𝑋 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ }) |
| 44 | 43 | biimpi 216 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐷 → 𝑋 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ }) |
| 45 | | nfcv 2898 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥𝑋 |
| 46 | 7, 45 | nffv 6886 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥((𝐹‘𝑚)‘𝑋) |
| 47 | 3, 46 | nfmpt 5219 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) |
| 48 | | nfcv 2898 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥dom
⇝ |
| 49 | 47, 48 | nfel 2913 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ |
| 50 | | fveq2 6876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑚)‘𝑋)) |
| 51 | 50 | mpteq2dv 5215 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) |
| 52 | 51 | eleq1d 2819 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
| 53 | 45, 10, 49, 52 | elrabf 3667 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } ↔ (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
| 54 | 53 | biimpi 216 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑋 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
| 55 | 54 | simprd 495 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ ) |
| 56 | 44, 55 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐷 → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ ) |
| 57 | 56 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ ) |
| 58 | | nfmpt1 5220 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) |
| 59 | | nfcv 2898 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚dom
⇝ |
| 60 | 58, 59 | nfel 2913 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ |
| 61 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚 𝑗 ∈ 𝑍 |
| 62 | 61 | nfci 2886 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚𝑍 |
| 63 | 62, 22 | nfiun 4999 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
| 64 | 60, 63 | nfrabw 3454 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑚{𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
| 65 | 2, 64 | nfcxfr 2896 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚𝐷 |
| 66 | 21, 65 | nfel 2913 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚 𝑋 ∈ 𝐷 |
| 67 | 66, 20 | nfan 1899 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚(𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) |
| 68 | 29 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ ℤ) |
| 69 | 32 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → 𝑍 ∈ V) |
| 70 | 35 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ⊆ 𝑍) |
| 71 | | fvexd 6891 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ 𝑍) → ((𝐹‘𝑚)‘𝑋) ∈ V) |
| 72 | | fvexd 6891 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ∈ V) |
| 73 | | ssidd 3982 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → (ℤ≥‘𝑛) ⊆
(ℤ≥‘𝑛)) |
| 74 | | fvexd 6891 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑚)‘𝑋) ∈ V) |
| 75 | | eqidd 2736 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑚)‘𝑋) = ((𝐹‘𝑚)‘𝑋)) |
| 76 | 67, 68, 31, 69, 70, 71, 72, 73, 74, 75 | climeldmeqmpt 45697 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ )) |
| 77 | 57, 76 | mpbid 232 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ ) |
| 78 | | climdm 15570 |
. . . . . . . . 9
⊢ ((𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 79 | 77, 78 | sylib 218 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑛 ∈ 𝑍) → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 80 | 1, 79 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 81 | 80 | 3adant3 1132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)))) |
| 82 | | simpl1 1192 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝜑) |
| 83 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ 𝑍) |
| 84 | | nfcv 2898 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗dom
(𝐹‘𝑚) |
| 85 | | fnlimfvre.m |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚𝐹 |
| 86 | | nfcv 2898 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚𝑗 |
| 87 | 85, 86 | nffv 6886 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑚(𝐹‘𝑗) |
| 88 | 87 | nfdm 5931 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚dom
(𝐹‘𝑗) |
| 89 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑗 → (𝐹‘𝑚) = (𝐹‘𝑗)) |
| 90 | 89 | dmeqd 5885 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑗 → dom (𝐹‘𝑚) = dom (𝐹‘𝑗)) |
| 91 | 84, 88, 90 | cbviin 5013 |
. . . . . . . . . . . 12
⊢ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∩ 𝑗 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑗) |
| 92 | 91 | eleq2i 2826 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ↔ 𝑋 ∈ ∩
𝑗 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑗)) |
| 93 | 92 | biimpi 216 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) → 𝑋 ∈ ∩
𝑗 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑗)) |
| 94 | 93 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑋 ∈ ∩
𝑗 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑗)) |
| 95 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑗 ∈ (ℤ≥‘𝑛)) |
| 96 | | eliinid 45135 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ∩ 𝑗 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑗) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑋 ∈ dom (𝐹‘𝑗)) |
| 97 | 94, 95, 96 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑋 ∈ dom (𝐹‘𝑗)) |
| 98 | 97 | 3ad2antl3 1188 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑋 ∈ dom (𝐹‘𝑗)) |
| 99 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑗 ∈ (ℤ≥‘𝑛)) |
| 100 | | id 22 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑛) → 𝑗 ∈ (ℤ≥‘𝑛)) |
| 101 | | fvexd 6891 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑛) → ((𝐹‘𝑗)‘𝑋) ∈ V) |
| 102 | 87, 21 | nffv 6886 |
. . . . . . . . . . 11
⊢
Ⅎ𝑚((𝐹‘𝑗)‘𝑋) |
| 103 | 89 | fveq1d 6878 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑗 → ((𝐹‘𝑚)‘𝑋) = ((𝐹‘𝑗)‘𝑋)) |
| 104 | | eqid 2735 |
. . . . . . . . . . 11
⊢ (𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) = (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋)) |
| 105 | 86, 102, 103, 104 | fvmptf 7007 |
. . . . . . . . . 10
⊢ ((𝑗 ∈
(ℤ≥‘𝑛) ∧ ((𝐹‘𝑗)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑗) = ((𝐹‘𝑗)‘𝑋)) |
| 106 | 100, 101,
105 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝑗 ∈
(ℤ≥‘𝑛) → ((𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑗) = ((𝐹‘𝑗)‘𝑋)) |
| 107 | 106 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ dom (𝐹‘𝑗)) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → ((𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑗) = ((𝐹‘𝑗)‘𝑋)) |
| 108 | | simpll 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝜑) |
| 109 | 34 | adantll 714 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑗 ∈ 𝑍) |
| 110 | 19, 61 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 111 | | nfcv 2898 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑚ℝ |
| 112 | 87, 88, 111 | nff 6702 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚(𝐹‘𝑗):dom (𝐹‘𝑗)⟶ℝ |
| 113 | 110, 112 | nfim 1896 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗):dom (𝐹‘𝑗)⟶ℝ) |
| 114 | | eleq1w 2817 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑗 → (𝑚 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) |
| 115 | 114 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑗 → ((𝜑 ∧ 𝑚 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 116 | 89, 90 | feq12d 6694 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑗 → ((𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ ↔ (𝐹‘𝑗):dom (𝐹‘𝑗)⟶ℝ)) |
| 117 | 115, 116 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑗 → (((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗):dom (𝐹‘𝑗)⟶ℝ))) |
| 118 | | fnlimfvre.f |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
| 119 | 113, 117,
118 | chvarfv 2240 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗):dom (𝐹‘𝑗)⟶ℝ) |
| 120 | 108, 109,
119 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑗):dom (𝐹‘𝑗)⟶ℝ) |
| 121 | 120 | 3adantl3 1169 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ dom (𝐹‘𝑗)) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑗):dom (𝐹‘𝑗)⟶ℝ) |
| 122 | | simpl3 1194 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ dom (𝐹‘𝑗)) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → 𝑋 ∈ dom (𝐹‘𝑗)) |
| 123 | 121, 122 | ffvelcdmd 7075 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ dom (𝐹‘𝑗)) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → ((𝐹‘𝑗)‘𝑋) ∈ ℝ) |
| 124 | 107, 123 | eqeltrd 2834 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ dom (𝐹‘𝑗)) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → ((𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑗) ∈ ℝ) |
| 125 | 82, 83, 98, 99, 124 | syl31anc 1375 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) ∧ 𝑗 ∈ (ℤ≥‘𝑛)) → ((𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))‘𝑗) ∈ ℝ) |
| 126 | 31, 30, 81, 125 | climrecl 15599 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → ( ⇝ ‘(𝑚 ∈
(ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
| 127 | 42, 126 | eqeltrd 2834 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
| 128 | 127 | 3exp 1119 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 → (𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ))) |
| 129 | 17, 18, 128 | rexlimd 3249 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ 𝑍 𝑋 ∈ ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ)) |
| 130 | 16, 129 | mpd 15 |
1
⊢ (𝜑 → ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |