Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimfvre Structured version   Visualization version   GIF version

Theorem fnlimfvre 42890
Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimfvre.p 𝑚𝜑
fnlimfvre.m 𝑚𝐹
fnlimfvre.n 𝑥𝐹
fnlimfvre.z 𝑍 = (ℤ𝑀)
fnlimfvre.f ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimfvre.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimfvre.x (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimfvre (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
Distinct variable groups:   𝑛,𝐹   𝑚,𝑋,𝑛,𝑥   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem fnlimfvre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fnlimfvre.x . . 3 (𝜑𝑋𝐷)
2 fnlimfvre.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 nfcv 2904 . . . . . . . 8 𝑥𝑍
4 nfcv 2904 . . . . . . . . 9 𝑥(ℤ𝑛)
5 fnlimfvre.n . . . . . . . . . . 11 𝑥𝐹
6 nfcv 2904 . . . . . . . . . . 11 𝑥𝑚
75, 6nffv 6727 . . . . . . . . . 10 𝑥(𝐹𝑚)
87nfdm 5820 . . . . . . . . 9 𝑥dom (𝐹𝑚)
94, 8nfiin 4935 . . . . . . . 8 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
103, 9nfiun 4934 . . . . . . 7 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1110ssrab2f 42339 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
122, 11eqsstri 3935 . . . . 5 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1312sseli 3896 . . . 4 (𝑋𝐷𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14 eliun 4908 . . . 4 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1513, 14sylib 221 . . 3 (𝑋𝐷 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
161, 15syl 17 . 2 (𝜑 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
17 nfv 1922 . . 3 𝑛𝜑
18 nfv 1922 . . 3 𝑛( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ
19 fnlimfvre.p . . . . . . 7 𝑚𝜑
20 nfv 1922 . . . . . . 7 𝑚 𝑛𝑍
21 nfcv 2904 . . . . . . . 8 𝑚𝑋
22 nfii1 4939 . . . . . . . 8 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2321, 22nfel 2918 . . . . . . 7 𝑚 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2419, 20, 23nf3an 1909 . . . . . 6 𝑚(𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
25 uzssz 12459 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
26 fnlimfvre.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
2726eleq2i 2829 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
2827biimpi 219 . . . . . . . 8 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
2925, 28sseldi 3899 . . . . . . 7 (𝑛𝑍𝑛 ∈ ℤ)
30293ad2ant2 1136 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ ℤ)
31 eqid 2737 . . . . . 6 (ℤ𝑛) = (ℤ𝑛)
3226fvexi 6731 . . . . . . 7 𝑍 ∈ V
3332a1i 11 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑍 ∈ V)
3426uztrn2 12457 . . . . . . . 8 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
3534ssd 42303 . . . . . . 7 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
36353ad2ant2 1136 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ 𝑍)
37 fvexd 6732 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
38 fvexd 6732 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ∈ V)
39 ssidd 3924 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ (ℤ𝑛))
40 fvexd 6732 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
41 eqidd 2738 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑋))
4224, 30, 31, 33, 36, 37, 38, 39, 40, 41climfveqmpt 42887 . . . . 5 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) = ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
432eleq2i 2829 . . . . . . . . . . . . 13 (𝑋𝐷𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
4443biimpi 219 . . . . . . . . . . . 12 (𝑋𝐷𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
45 nfcv 2904 . . . . . . . . . . . . . . 15 𝑥𝑋
467, 45nffv 6727 . . . . . . . . . . . . . . . . 17 𝑥((𝐹𝑚)‘𝑋)
473, 46nfmpt 5152 . . . . . . . . . . . . . . . 16 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
48 nfcv 2904 . . . . . . . . . . . . . . . 16 𝑥dom ⇝
4947, 48nfel 2918 . . . . . . . . . . . . . . 15 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝
50 fveq2 6717 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑋))
5150mpteq2dv 5151 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
5251eleq1d 2822 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5345, 10, 49, 52elrabf 3598 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ↔ (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5453biimpi 219 . . . . . . . . . . . . 13 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5554simprd 499 . . . . . . . . . . . 12 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
5644, 55syl 17 . . . . . . . . . . 11 (𝑋𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
5756adantr 484 . . . . . . . . . 10 ((𝑋𝐷𝑛𝑍) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
58 nfmpt1 5153 . . . . . . . . . . . . . . . 16 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
59 nfcv 2904 . . . . . . . . . . . . . . . 16 𝑚dom ⇝
6058, 59nfel 2918 . . . . . . . . . . . . . . 15 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
61 nfv 1922 . . . . . . . . . . . . . . . . 17 𝑚 𝑗𝑍
6261nfci 2887 . . . . . . . . . . . . . . . 16 𝑚𝑍
6362, 22nfiun 4934 . . . . . . . . . . . . . . 15 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6460, 63nfrabw 3297 . . . . . . . . . . . . . 14 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
652, 64nfcxfr 2902 . . . . . . . . . . . . 13 𝑚𝐷
6621, 65nfel 2918 . . . . . . . . . . . 12 𝑚 𝑋𝐷
6766, 20nfan 1907 . . . . . . . . . . 11 𝑚(𝑋𝐷𝑛𝑍)
6829adantl 485 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → 𝑛 ∈ ℤ)
6932a1i 11 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → 𝑍 ∈ V)
7035adantl 485 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
71 fvexd 6732 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
72 fvexd 6732 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ∈ V)
73 ssidd 3924 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ⊆ (ℤ𝑛))
74 fvexd 6732 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
75 eqidd 2738 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑋))
7667, 68, 31, 69, 70, 71, 72, 73, 74, 75climeldmeqmpt 42884 . . . . . . . . . 10 ((𝑋𝐷𝑛𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
7757, 76mpbid 235 . . . . . . . . 9 ((𝑋𝐷𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
78 climdm 15115 . . . . . . . . 9 ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
7977, 78sylib 221 . . . . . . . 8 ((𝑋𝐷𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
801, 79sylan 583 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
81803adant3 1134 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
82 simpl1 1193 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝜑)
83 simpl2 1194 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑛𝑍)
84 nfcv 2904 . . . . . . . . . . . . 13 𝑗dom (𝐹𝑚)
85 fnlimfvre.m . . . . . . . . . . . . . . 15 𝑚𝐹
86 nfcv 2904 . . . . . . . . . . . . . . 15 𝑚𝑗
8785, 86nffv 6727 . . . . . . . . . . . . . 14 𝑚(𝐹𝑗)
8887nfdm 5820 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑗)
89 fveq2 6717 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
9089dmeqd 5774 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
9184, 88, 90cbviin 4946 . . . . . . . . . . . 12 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗)
9291eleq2i 2829 . . . . . . . . . . 11 (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
9392biimpi 219 . . . . . . . . . 10 (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
9493adantr 484 . . . . . . . . 9 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
95 simpr 488 . . . . . . . . 9 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗 ∈ (ℤ𝑛))
96 eliinid 42334 . . . . . . . . 9 ((𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
9794, 95, 96syl2anc 587 . . . . . . . 8 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
98973ad2antl3 1189 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
99 simpr 488 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗 ∈ (ℤ𝑛))
100 id 22 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑛) → 𝑗 ∈ (ℤ𝑛))
101 fvexd 6732 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑛) → ((𝐹𝑗)‘𝑋) ∈ V)
10287, 21nffv 6727 . . . . . . . . . . 11 𝑚((𝐹𝑗)‘𝑋)
10389fveq1d 6719 . . . . . . . . . . 11 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑗)‘𝑋))
104 eqid 2737 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
10586, 102, 103, 104fvmptf 6839 . . . . . . . . . 10 ((𝑗 ∈ (ℤ𝑛) ∧ ((𝐹𝑗)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
106100, 101, 105syl2anc 587 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑛) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
107106adantl 485 . . . . . . . 8 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
108 simpll 767 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝜑)
10934adantll 714 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
11019, 61nfan 1907 . . . . . . . . . . . . 13 𝑚(𝜑𝑗𝑍)
111 nfcv 2904 . . . . . . . . . . . . . 14 𝑚
11287, 88, 111nff 6541 . . . . . . . . . . . . 13 𝑚(𝐹𝑗):dom (𝐹𝑗)⟶ℝ
113110, 112nfim 1904 . . . . . . . . . . . 12 𝑚((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
114 eleq1w 2820 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝑚𝑍𝑗𝑍))
115114anbi2d 632 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝜑𝑚𝑍) ↔ (𝜑𝑗𝑍)))
11689, 90feq12d 6533 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝐹𝑚):dom (𝐹𝑚)⟶ℝ ↔ (𝐹𝑗):dom (𝐹𝑗)⟶ℝ))
117115, 116imbi12d 348 . . . . . . . . . . . 12 (𝑚 = 𝑗 → (((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)))
118 fnlimfvre.f . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
119113, 117, 118chvarfv 2238 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
120108, 109, 119syl2anc 587 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
1211203adantl3 1170 . . . . . . . . 9 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
122 simpl3 1195 . . . . . . . . 9 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
123121, 122ffvelrnd 6905 . . . . . . . 8 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝐹𝑗)‘𝑋) ∈ ℝ)
124107, 123eqeltrd 2838 . . . . . . 7 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) ∈ ℝ)
12582, 83, 98, 99, 124syl31anc 1375 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) ∈ ℝ)
12631, 30, 81, 125climrecl 15144 . . . . 5 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
12742, 126eqeltrd 2838 . . . 4 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
1281273exp 1121 . . 3 (𝜑 → (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)))
12917, 18, 128rexlimd 3236 . 2 (𝜑 → (∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ))
13016, 129mpd 15 1 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wnf 1791  wcel 2110  wnfc 2884  wrex 3062  {crab 3065  Vcvv 3408  wss 3866   ciun 4904   ciin 4905   class class class wbr 5053  cmpt 5135  dom cdm 5551  wf 6376  cfv 6380  cr 10728  cz 12176  cuz 12438  cli 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fl 13367  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050
This theorem is referenced by:  fnlimfvre2  42893  fnlimf  42894  smflimlem4  43981  smflim  43984
  Copyright terms: Public domain W3C validator