Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnlimfvre Structured version   Visualization version   GIF version

Theorem fnlimfvre 44325
Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fnlimfvre.p 𝑚𝜑
fnlimfvre.m 𝑚𝐹
fnlimfvre.n 𝑥𝐹
fnlimfvre.z 𝑍 = (ℤ𝑀)
fnlimfvre.f ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
fnlimfvre.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
fnlimfvre.x (𝜑𝑋𝐷)
Assertion
Ref Expression
fnlimfvre (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
Distinct variable groups:   𝑛,𝐹   𝑚,𝑋,𝑛,𝑥   𝑚,𝑍,𝑛,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑚)   𝐷(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem fnlimfvre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fnlimfvre.x . . 3 (𝜑𝑋𝐷)
2 fnlimfvre.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
3 nfcv 2904 . . . . . . . 8 𝑥𝑍
4 nfcv 2904 . . . . . . . . 9 𝑥(ℤ𝑛)
5 fnlimfvre.n . . . . . . . . . . 11 𝑥𝐹
6 nfcv 2904 . . . . . . . . . . 11 𝑥𝑚
75, 6nffv 6898 . . . . . . . . . 10 𝑥(𝐹𝑚)
87nfdm 5948 . . . . . . . . 9 𝑥dom (𝐹𝑚)
94, 8nfiin 5027 . . . . . . . 8 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
103, 9nfiun 5026 . . . . . . 7 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1110ssrab2f 43739 . . . . . 6 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
122, 11eqsstri 4015 . . . . 5 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
1312sseli 3977 . . . 4 (𝑋𝐷𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
14 eliun 5000 . . . 4 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
1513, 14sylib 217 . . 3 (𝑋𝐷 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
161, 15syl 17 . 2 (𝜑 → ∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
17 nfv 1918 . . 3 𝑛𝜑
18 nfv 1918 . . 3 𝑛( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ
19 fnlimfvre.p . . . . . . 7 𝑚𝜑
20 nfv 1918 . . . . . . 7 𝑚 𝑛𝑍
21 nfcv 2904 . . . . . . . 8 𝑚𝑋
22 nfii1 5031 . . . . . . . 8 𝑚 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2321, 22nfel 2918 . . . . . . 7 𝑚 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
2419, 20, 23nf3an 1905 . . . . . 6 𝑚(𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
25 uzssz 12839 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
26 fnlimfvre.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
2726eleq2i 2826 . . . . . . . . 9 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
2827biimpi 215 . . . . . . . 8 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
2925, 28sselid 3979 . . . . . . 7 (𝑛𝑍𝑛 ∈ ℤ)
30293ad2ant2 1135 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑛 ∈ ℤ)
31 eqid 2733 . . . . . 6 (ℤ𝑛) = (ℤ𝑛)
3226fvexi 6902 . . . . . . 7 𝑍 ∈ V
3332a1i 11 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → 𝑍 ∈ V)
3426uztrn2 12837 . . . . . . . 8 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
3534ssd 43702 . . . . . . 7 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
36353ad2ant2 1135 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ 𝑍)
37 fvexd 6903 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
38 fvexd 6903 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ∈ V)
39 ssidd 4004 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (ℤ𝑛) ⊆ (ℤ𝑛))
40 fvexd 6903 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
41 eqidd 2734 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑋))
4224, 30, 31, 33, 36, 37, 38, 39, 40, 41climfveqmpt 44322 . . . . 5 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) = ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
432eleq2i 2826 . . . . . . . . . . . . 13 (𝑋𝐷𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
4443biimpi 215 . . . . . . . . . . . 12 (𝑋𝐷𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ })
45 nfcv 2904 . . . . . . . . . . . . . . 15 𝑥𝑋
467, 45nffv 6898 . . . . . . . . . . . . . . . . 17 𝑥((𝐹𝑚)‘𝑋)
473, 46nfmpt 5254 . . . . . . . . . . . . . . . 16 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))
48 nfcv 2904 . . . . . . . . . . . . . . . 16 𝑥dom ⇝
4947, 48nfel 2918 . . . . . . . . . . . . . . 15 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝
50 fveq2 6888 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑋))
5150mpteq2dv 5249 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)))
5251eleq1d 2819 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5345, 10, 49, 52elrabf 3678 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ↔ (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5453biimpi 215 . . . . . . . . . . . . 13 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
5554simprd 497 . . . . . . . . . . . 12 (𝑋 ∈ {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
5644, 55syl 17 . . . . . . . . . . 11 (𝑋𝐷 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
5756adantr 482 . . . . . . . . . 10 ((𝑋𝐷𝑛𝑍) → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
58 nfmpt1 5255 . . . . . . . . . . . . . . . 16 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))
59 nfcv 2904 . . . . . . . . . . . . . . . 16 𝑚dom ⇝
6058, 59nfel 2918 . . . . . . . . . . . . . . 15 𝑚(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
61 nfv 1918 . . . . . . . . . . . . . . . . 17 𝑚 𝑗𝑍
6261nfci 2887 . . . . . . . . . . . . . . . 16 𝑚𝑍
6362, 22nfiun 5026 . . . . . . . . . . . . . . 15 𝑚 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
6460, 63nfrabw 3469 . . . . . . . . . . . . . 14 𝑚{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
652, 64nfcxfr 2902 . . . . . . . . . . . . 13 𝑚𝐷
6621, 65nfel 2918 . . . . . . . . . . . 12 𝑚 𝑋𝐷
6766, 20nfan 1903 . . . . . . . . . . 11 𝑚(𝑋𝐷𝑛𝑍)
6829adantl 483 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → 𝑛 ∈ ℤ)
6932a1i 11 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → 𝑍 ∈ V)
7035adantl 483 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ⊆ 𝑍)
71 fvexd 6903 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚𝑍) → ((𝐹𝑚)‘𝑋) ∈ V)
72 fvexd 6903 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ∈ V)
73 ssidd 4004 . . . . . . . . . . 11 ((𝑋𝐷𝑛𝑍) → (ℤ𝑛) ⊆ (ℤ𝑛))
74 fvexd 6903 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) ∈ V)
75 eqidd 2734 . . . . . . . . . . 11 (((𝑋𝐷𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑋) = ((𝐹𝑚)‘𝑋))
7667, 68, 31, 69, 70, 71, 72, 73, 74, 75climeldmeqmpt 44319 . . . . . . . . . 10 ((𝑋𝐷𝑛𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ))
7757, 76mpbid 231 . . . . . . . . 9 ((𝑋𝐷𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ )
78 climdm 15494 . . . . . . . . 9 ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ∈ dom ⇝ ↔ (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
7977, 78sylib 217 . . . . . . . 8 ((𝑋𝐷𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
801, 79sylan 581 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
81803adant3 1133 . . . . . 6 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) ⇝ ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))))
82 simpl1 1192 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝜑)
83 simpl2 1193 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑛𝑍)
84 nfcv 2904 . . . . . . . . . . . . 13 𝑗dom (𝐹𝑚)
85 fnlimfvre.m . . . . . . . . . . . . . . 15 𝑚𝐹
86 nfcv 2904 . . . . . . . . . . . . . . 15 𝑚𝑗
8785, 86nffv 6898 . . . . . . . . . . . . . 14 𝑚(𝐹𝑗)
8887nfdm 5948 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑗)
89 fveq2 6888 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
9089dmeqd 5903 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
9184, 88, 90cbviin 5039 . . . . . . . . . . . 12 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗)
9291eleq2i 2826 . . . . . . . . . . 11 (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
9392biimpi 215 . . . . . . . . . 10 (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
9493adantr 482 . . . . . . . . 9 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗))
95 simpr 486 . . . . . . . . 9 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗 ∈ (ℤ𝑛))
96 eliinid 43733 . . . . . . . . 9 ((𝑋 𝑗 ∈ (ℤ𝑛)dom (𝐹𝑗) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
9794, 95, 96syl2anc 585 . . . . . . . 8 ((𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
98973ad2antl3 1188 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
99 simpr 486 . . . . . . 7 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗 ∈ (ℤ𝑛))
100 id 22 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑛) → 𝑗 ∈ (ℤ𝑛))
101 fvexd 6903 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑛) → ((𝐹𝑗)‘𝑋) ∈ V)
10287, 21nffv 6898 . . . . . . . . . . 11 𝑚((𝐹𝑗)‘𝑋)
10389fveq1d 6890 . . . . . . . . . . 11 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑋) = ((𝐹𝑗)‘𝑋))
104 eqid 2733 . . . . . . . . . . 11 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))
10586, 102, 103, 104fvmptf 7015 . . . . . . . . . 10 ((𝑗 ∈ (ℤ𝑛) ∧ ((𝐹𝑗)‘𝑋) ∈ V) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
106100, 101, 105syl2anc 585 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑛) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
107106adantl 483 . . . . . . . 8 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) = ((𝐹𝑗)‘𝑋))
108 simpll 766 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝜑)
10934adantll 713 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
11019, 61nfan 1903 . . . . . . . . . . . . 13 𝑚(𝜑𝑗𝑍)
111 nfcv 2904 . . . . . . . . . . . . . 14 𝑚
11287, 88, 111nff 6710 . . . . . . . . . . . . 13 𝑚(𝐹𝑗):dom (𝐹𝑗)⟶ℝ
113110, 112nfim 1900 . . . . . . . . . . . 12 𝑚((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
114 eleq1w 2817 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → (𝑚𝑍𝑗𝑍))
115114anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝜑𝑚𝑍) ↔ (𝜑𝑗𝑍)))
11689, 90feq12d 6702 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → ((𝐹𝑚):dom (𝐹𝑚)⟶ℝ ↔ (𝐹𝑗):dom (𝐹𝑗)⟶ℝ))
117115, 116imbi12d 345 . . . . . . . . . . . 12 (𝑚 = 𝑗 → (((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ) ↔ ((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)))
118 fnlimfvre.f . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
119113, 117, 118chvarfv 2234 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
120108, 109, 119syl2anc 585 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
1211203adantl3 1169 . . . . . . . . 9 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → (𝐹𝑗):dom (𝐹𝑗)⟶ℝ)
122 simpl3 1194 . . . . . . . . 9 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑋 ∈ dom (𝐹𝑗))
123121, 122ffvelcdmd 7083 . . . . . . . 8 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝐹𝑗)‘𝑋) ∈ ℝ)
124107, 123eqeltrd 2834 . . . . . . 7 (((𝜑𝑛𝑍𝑋 ∈ dom (𝐹𝑗)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) ∈ ℝ)
12582, 83, 98, 99, 124syl31anc 1374 . . . . . 6 (((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) ∧ 𝑗 ∈ (ℤ𝑛)) → ((𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))‘𝑗) ∈ ℝ)
12631, 30, 81, 125climrecl 15523 . . . . 5 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
12742, 126eqeltrd 2834 . . . 4 ((𝜑𝑛𝑍𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
1281273exp 1120 . . 3 (𝜑 → (𝑛𝑍 → (𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)))
12917, 18, 128rexlimd 3264 . 2 (𝜑 → (∃𝑛𝑍 𝑋 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ))
13016, 129mpd 15 1 (𝜑 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑋))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wnf 1786  wcel 2107  wnfc 2884  wrex 3071  {crab 3433  Vcvv 3475  wss 3947   ciun 4996   ciin 4997   class class class wbr 5147  cmpt 5230  dom cdm 5675  wf 6536  cfv 6540  cr 11105  cz 12554  cuz 12818  cli 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fl 13753  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429
This theorem is referenced by:  fnlimfvre2  44328  fnlimf  44329  smflimlem4  45425  smflim  45428
  Copyright terms: Public domain W3C validator