Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsuse Structured version   Visualization version   GIF version

Theorem climsuse 42824
Description: A subsequence 𝐺 of a converging sequence 𝐹, converges to the same limit. 𝐼 is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climsuse.1 𝑘𝜑
climsuse.3 𝑘𝐹
climsuse.2 𝑘𝐺
climsuse.4 𝑘𝐼
climsuse.5 𝑍 = (ℤ𝑀)
climsuse.6 (𝜑𝑀 ∈ ℤ)
climsuse.7 (𝜑𝐹𝑋)
climsuse.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climsuse.9 (𝜑𝐹𝐴)
climsuse.10 (𝜑 → (𝐼𝑀) ∈ 𝑍)
climsuse.11 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
climsuse.12 (𝜑𝐺𝑌)
climsuse.13 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘)))
Assertion
Ref Expression
climsuse (𝜑𝐺𝐴)
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐼(𝑘)   𝑀(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem climsuse
Dummy variables 𝑖 𝑗 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climsuse.9 . . 3 (𝜑𝐹𝐴)
2 climcl 15060 . . 3 (𝐹𝐴𝐴 ∈ ℂ)
31, 2syl 17 . 2 (𝜑𝐴 ∈ ℂ)
4 nfv 1922 . . 3 𝑥𝜑
5 simpllr 776 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑀𝑗) → 𝑗 ∈ ℤ)
6 climsuse.6 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
76ad4antr 732 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ ℤ)
85, 7ifclda 4474 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → if(𝑀𝑗, 𝑗, 𝑀) ∈ ℤ)
9 nfv 1922 . . . . . . . 8 𝑖((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ)
10 nfra1 3140 . . . . . . . 8 𝑖𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)
119, 10nfan 1907 . . . . . . 7 𝑖(((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
12 simp-4l 783 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝜑)
13 simpllr 776 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℤ)
1412, 13jca 515 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝜑𝑗 ∈ ℤ))
15 simpr 488 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
16 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → 𝑀𝑗)
176anim1i 618 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ))
1817adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ))
19 eluz 12452 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ𝑀) ↔ 𝑀𝑗))
2018, 19syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → (𝑗 ∈ (ℤ𝑀) ↔ 𝑀𝑗))
2116, 20mpbird 260 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → 𝑗 ∈ (ℤ𝑀))
22 simpll 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ ¬ 𝑀𝑗) → 𝜑)
23 uzid 12453 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2422, 6, 233syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℤ) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ (ℤ𝑀))
2521, 24ifclda 4474 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ) → if(𝑀𝑗, 𝑗, 𝑀) ∈ (ℤ𝑀))
26 uzss 12461 . . . . . . . . . . . . . 14 (if(𝑀𝑗, 𝑗, 𝑀) ∈ (ℤ𝑀) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ (ℤ𝑀))
2725, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ (ℤ𝑀))
28 climsuse.5 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
2927, 28sseqtrrdi 3952 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ 𝑍)
3029sseld 3900 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℤ) → (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → 𝑖𝑍))
3114, 15, 30sylc 65 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖𝑍)
32 climsuse.1 . . . . . . . . . . . . . 14 𝑘𝜑
33 nfv 1922 . . . . . . . . . . . . . 14 𝑘 𝑖𝑍
3432, 33nfan 1907 . . . . . . . . . . . . 13 𝑘(𝜑𝑖𝑍)
35 climsuse.2 . . . . . . . . . . . . . . 15 𝑘𝐺
36 nfcv 2904 . . . . . . . . . . . . . . 15 𝑘𝑖
3735, 36nffv 6727 . . . . . . . . . . . . . 14 𝑘(𝐺𝑖)
38 climsuse.3 . . . . . . . . . . . . . . 15 𝑘𝐹
39 climsuse.4 . . . . . . . . . . . . . . . 16 𝑘𝐼
4039, 36nffv 6727 . . . . . . . . . . . . . . 15 𝑘(𝐼𝑖)
4138, 40nffv 6727 . . . . . . . . . . . . . 14 𝑘(𝐹‘(𝐼𝑖))
4237, 41nfeq 2917 . . . . . . . . . . . . 13 𝑘(𝐺𝑖) = (𝐹‘(𝐼𝑖))
4334, 42nfim 1904 . . . . . . . . . . . 12 𝑘((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
44 eleq1 2825 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝑘𝑍𝑖𝑍))
4544anbi2d 632 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝜑𝑘𝑍) ↔ (𝜑𝑖𝑍)))
46 fveq2 6717 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐺𝑘) = (𝐺𝑖))
47 2fveq3 6722 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐹‘(𝐼𝑘)) = (𝐹‘(𝐼𝑖)))
4846, 47eqeq12d 2753 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝐺𝑘) = (𝐹‘(𝐼𝑘)) ↔ (𝐺𝑖) = (𝐹‘(𝐼𝑖))))
4945, 48imbi12d 348 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘))) ↔ ((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))))
50 climsuse.13 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘)))
5143, 49, 50chvarfv 2238 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
5228eleq2i 2829 . . . . . . . . . . . . . . . . 17 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
5352biimpi 219 . . . . . . . . . . . . . . . 16 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
5453adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
55 uzss 12461 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
5654, 55syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ (ℤ𝑀))
57 climsuse.10 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼𝑀) ∈ 𝑍)
58 nfcv 2904 . . . . . . . . . . . . . . . . . . 19 𝑘(𝑖 + 1)
5939, 58nffv 6727 . . . . . . . . . . . . . . . . . 18 𝑘(𝐼‘(𝑖 + 1))
60 nfcv 2904 . . . . . . . . . . . . . . . . . . 19 𝑘
61 nfcv 2904 . . . . . . . . . . . . . . . . . . . 20 𝑘 +
62 nfcv 2904 . . . . . . . . . . . . . . . . . . . 20 𝑘1
6340, 61, 62nfov 7243 . . . . . . . . . . . . . . . . . . 19 𝑘((𝐼𝑖) + 1)
6460, 63nffv 6727 . . . . . . . . . . . . . . . . . 18 𝑘(ℤ‘((𝐼𝑖) + 1))
6559, 64nfel 2918 . . . . . . . . . . . . . . . . 17 𝑘(𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1))
6634, 65nfim 1904 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))
67 fvoveq1 7236 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (𝐼‘(𝑘 + 1)) = (𝐼‘(𝑖 + 1)))
68 fveq2 6717 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝐼𝑘) = (𝐼𝑖))
6968fvoveq1d 7235 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (ℤ‘((𝐼𝑘) + 1)) = (ℤ‘((𝐼𝑖) + 1)))
7067, 69eleq12d 2832 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) ↔ (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1))))
7145, 70imbi12d 348 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1))) ↔ ((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))))
72 climsuse.11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
7366, 71, 72chvarfv 2238 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))
7428, 6, 57, 73climsuselem1 42823 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ (ℤ𝑖))
7556, 74sseldd 3902 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ (ℤ𝑀))
7675, 28eleqtrrdi 2849 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ 𝑍)
7776ex 416 . . . . . . . . . . . . 13 (𝜑 → (𝑖𝑍 → (𝐼𝑖) ∈ 𝑍))
7877imdistani 572 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → (𝜑 ∧ (𝐼𝑖) ∈ 𝑍))
7933nfci 2887 . . . . . . . . . . . . . . . 16 𝑘𝑍
8040, 79nfel 2918 . . . . . . . . . . . . . . 15 𝑘(𝐼𝑖) ∈ 𝑍
8132, 80nfan 1907 . . . . . . . . . . . . . 14 𝑘(𝜑 ∧ (𝐼𝑖) ∈ 𝑍)
8241nfel1 2920 . . . . . . . . . . . . . 14 𝑘(𝐹‘(𝐼𝑖)) ∈ ℂ
8381, 82nfim 1904 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)
84 eleq1 2825 . . . . . . . . . . . . . . 15 (𝑘 = (𝐼𝑖) → (𝑘𝑍 ↔ (𝐼𝑖) ∈ 𝑍))
8584anbi2d 632 . . . . . . . . . . . . . 14 (𝑘 = (𝐼𝑖) → ((𝜑𝑘𝑍) ↔ (𝜑 ∧ (𝐼𝑖) ∈ 𝑍)))
86 fveq2 6717 . . . . . . . . . . . . . . 15 (𝑘 = (𝐼𝑖) → (𝐹𝑘) = (𝐹‘(𝐼𝑖)))
8786eleq1d 2822 . . . . . . . . . . . . . 14 (𝑘 = (𝐼𝑖) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝐼𝑖)) ∈ ℂ))
8885, 87imbi12d 348 . . . . . . . . . . . . 13 (𝑘 = (𝐼𝑖) → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)))
89 climsuse.8 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
9040, 83, 88, 89vtoclgf 3479 . . . . . . . . . . . 12 ((𝐼𝑖) ∈ 𝑍 → ((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ))
9176, 78, 90sylc 65 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)
9251, 91eqeltrd 2838 . . . . . . . . . 10 ((𝜑𝑖𝑍) → (𝐺𝑖) ∈ ℂ)
9312, 31, 92syl2anc 587 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐺𝑖) ∈ ℂ)
9412, 31, 51syl2anc 587 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
9594fvoveq1d 7235 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐺𝑖) − 𝐴)) = (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)))
96 fveq2 6717 . . . . . . . . . . . . . . . 16 (𝑖 = → (𝐹𝑖) = (𝐹))
9796eleq1d 2822 . . . . . . . . . . . . . . 15 (𝑖 = → ((𝐹𝑖) ∈ ℂ ↔ (𝐹) ∈ ℂ))
9896fvoveq1d 7235 . . . . . . . . . . . . . . . 16 (𝑖 = → (abs‘((𝐹𝑖) − 𝐴)) = (abs‘((𝐹) − 𝐴)))
9998breq1d 5063 . . . . . . . . . . . . . . 15 (𝑖 = → ((abs‘((𝐹𝑖) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹) − 𝐴)) < 𝑥))
10097, 99anbi12d 634 . . . . . . . . . . . . . 14 (𝑖 = → (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) ↔ ((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥)))
101100cbvralvw 3358 . . . . . . . . . . . . 13 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) ↔ ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
102101biimpi 219 . . . . . . . . . . . 12 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) → ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
103102ad2antlr 727 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
104 zre 12180 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
1051043ad2ant2 1136 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℝ)
106 simp3 1140 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
107 eluzelz 12448 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → 𝑖 ∈ ℤ)
108 zre 12180 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
109106, 107, 1083syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ ℝ)
110 simp1 1138 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝜑)
1116zred 12282 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℝ)
112110, 111syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ∈ ℝ)
113 simpl2 1194 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ 𝑀𝑗) → 𝑗 ∈ ℤ)
114113zred 12282 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ 𝑀𝑗) → 𝑗 ∈ ℝ)
115112adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ ℝ)
116114, 115ifclda 4474 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → if(𝑀𝑗, 𝑗, 𝑀) ∈ ℝ)
117 max1 12775 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑗, 𝑗, 𝑀))
118112, 105, 117syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ≤ if(𝑀𝑗, 𝑗, 𝑀))
119 eluzle 12451 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → if(𝑀𝑗, 𝑗, 𝑀) ≤ 𝑖)
1201193ad2ant3 1137 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → if(𝑀𝑗, 𝑗, 𝑀) ≤ 𝑖)
121112, 116, 109, 118, 120letrd 10989 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀𝑖)
122110, 6syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ∈ ℤ)
1231073ad2ant3 1137 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ ℤ)
124 eluz 12452 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈ (ℤ𝑀) ↔ 𝑀𝑖))
125122, 123, 124syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝑖 ∈ (ℤ𝑀) ↔ 𝑀𝑖))
126121, 125mpbird 260 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ𝑀))
127126, 28eleqtrrdi 2849 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖𝑍)
128110, 127jca 515 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝜑𝑖𝑍))
129 eluzelre 12449 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑀) → (𝐼𝑖) ∈ ℝ)
130128, 75, 1293syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ ℝ)
131 max2 12777 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ if(𝑀𝑗, 𝑗, 𝑀))
132112, 105, 131syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ≤ if(𝑀𝑗, 𝑗, 𝑀))
133105, 116, 109, 132, 120letrd 10989 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗𝑖)
134 eluzle 12451 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑖) → 𝑖 ≤ (𝐼𝑖))
135128, 74, 1343syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ≤ (𝐼𝑖))
136105, 109, 130, 133, 135letrd 10989 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ≤ (𝐼𝑖))
137 simp2 1139 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℤ)
138 eluzelz 12448 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑖) → (𝐼𝑖) ∈ ℤ)
139128, 74, 1383syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ ℤ)
140 eluz 12452 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℤ ∧ (𝐼𝑖) ∈ ℤ) → ((𝐼𝑖) ∈ (ℤ𝑗) ↔ 𝑗 ≤ (𝐼𝑖)))
141137, 139, 140syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ((𝐼𝑖) ∈ (ℤ𝑗) ↔ 𝑗 ≤ (𝐼𝑖)))
142136, 141mpbird 260 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ (ℤ𝑗))
14312, 13, 15, 142syl3anc 1373 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ (ℤ𝑗))
144 fveq2 6717 . . . . . . . . . . . . . . 15 ( = (𝐼𝑖) → (𝐹) = (𝐹‘(𝐼𝑖)))
145144eleq1d 2822 . . . . . . . . . . . . . 14 ( = (𝐼𝑖) → ((𝐹) ∈ ℂ ↔ (𝐹‘(𝐼𝑖)) ∈ ℂ))
146144fvoveq1d 7235 . . . . . . . . . . . . . . 15 ( = (𝐼𝑖) → (abs‘((𝐹) − 𝐴)) = (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)))
147146breq1d 5063 . . . . . . . . . . . . . 14 ( = (𝐼𝑖) → ((abs‘((𝐹) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥))
148145, 147anbi12d 634 . . . . . . . . . . . . 13 ( = (𝐼𝑖) → (((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝐼𝑖)) ∈ ℂ ∧ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)))
149148rspccva 3536 . . . . . . . . . . . 12 ((∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ∧ (𝐼𝑖) ∈ (ℤ𝑗)) → ((𝐹‘(𝐼𝑖)) ∈ ℂ ∧ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥))
150149simprd 499 . . . . . . . . . . 11 ((∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ∧ (𝐼𝑖) ∈ (ℤ𝑗)) → (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)
151103, 143, 150syl2anc 587 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)
15295, 151eqbrtrd 5075 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)
15393, 152jca 515 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
154153ex 416 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → ((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
15511, 154ralrimi 3137 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
156 fveq2 6717 . . . . . . . 8 (𝑙 = if(𝑀𝑗, 𝑗, 𝑀) → (ℤ𝑙) = (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
157156raleqdv 3325 . . . . . . 7 (𝑙 = if(𝑀𝑗, 𝑗, 𝑀) → (∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥) ↔ ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
158157rspcev 3537 . . . . . 6 ((if(𝑀𝑗, 𝑗, 𝑀) ∈ ℤ ∧ ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
1598, 155, 158syl2anc 587 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
160 climsuse.7 . . . . . . . . 9 (𝜑𝐹𝑋)
161 eqidd 2738 . . . . . . . . 9 ((𝜑𝑖 ∈ ℤ) → (𝐹𝑖) = (𝐹𝑖))
162160, 161clim 15055 . . . . . . . 8 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))))
1631, 162mpbid 235 . . . . . . 7 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)))
164163simprd 499 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
165164r19.21bi 3130 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
166159, 165r19.29a 3208 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
167166ex 416 . . 3 (𝜑 → (𝑥 ∈ ℝ+ → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
1684, 167ralrimi 3137 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
169 climsuse.12 . . 3 (𝜑𝐺𝑌)
170 eqidd 2738 . . 3 ((𝜑𝑖 ∈ ℤ) → (𝐺𝑖) = (𝐺𝑖))
171169, 170clim 15055 . 2 (𝜑 → (𝐺𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))))
1723, 168, 171mpbir2and 713 1 (𝜑𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wnf 1791  wcel 2110  wnfc 2884  wral 3061  wrex 3062  wss 3866  ifcif 4439   class class class wbr 5053  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  1c1 10730   + caddc 10732   < clt 10867  cle 10868  cmin 11062  cz 12176  cuz 12438  +crp 12586  abscabs 14797  cli 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-clim 15049
This theorem is referenced by:  sumnnodd  42846  stirlinglem8  43297
  Copyright terms: Public domain W3C validator