Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsuse Structured version   Visualization version   GIF version

Theorem climsuse 45627
Description: A subsequence 𝐺 of a converging sequence 𝐹, converges to the same limit. 𝐼 is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climsuse.1 𝑘𝜑
climsuse.3 𝑘𝐹
climsuse.2 𝑘𝐺
climsuse.4 𝑘𝐼
climsuse.5 𝑍 = (ℤ𝑀)
climsuse.6 (𝜑𝑀 ∈ ℤ)
climsuse.7 (𝜑𝐹𝑋)
climsuse.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climsuse.9 (𝜑𝐹𝐴)
climsuse.10 (𝜑 → (𝐼𝑀) ∈ 𝑍)
climsuse.11 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
climsuse.12 (𝜑𝐺𝑌)
climsuse.13 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘)))
Assertion
Ref Expression
climsuse (𝜑𝐺𝐴)
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐼(𝑘)   𝑀(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem climsuse
Dummy variables 𝑖 𝑗 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climsuse.9 . . 3 (𝜑𝐹𝐴)
2 climcl 15398 . . 3 (𝐹𝐴𝐴 ∈ ℂ)
31, 2syl 17 . 2 (𝜑𝐴 ∈ ℂ)
4 nfv 1915 . . 3 𝑥𝜑
5 simpllr 775 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑀𝑗) → 𝑗 ∈ ℤ)
6 climsuse.6 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
76ad4antr 732 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ ℤ)
85, 7ifclda 4509 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → if(𝑀𝑗, 𝑗, 𝑀) ∈ ℤ)
9 nfv 1915 . . . . . . . 8 𝑖((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ)
10 nfra1 3254 . . . . . . . 8 𝑖𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)
119, 10nfan 1900 . . . . . . 7 𝑖(((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
12 simp-4l 782 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝜑)
13 simpllr 775 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℤ)
1412, 13jca 511 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝜑𝑗 ∈ ℤ))
15 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
16 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → 𝑀𝑗)
176anim1i 615 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ))
1817adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ))
19 eluz 12738 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ𝑀) ↔ 𝑀𝑗))
2018, 19syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → (𝑗 ∈ (ℤ𝑀) ↔ 𝑀𝑗))
2116, 20mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → 𝑗 ∈ (ℤ𝑀))
22 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ ¬ 𝑀𝑗) → 𝜑)
23 uzid 12739 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2422, 6, 233syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℤ) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ (ℤ𝑀))
2521, 24ifclda 4509 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ) → if(𝑀𝑗, 𝑗, 𝑀) ∈ (ℤ𝑀))
26 uzss 12747 . . . . . . . . . . . . . 14 (if(𝑀𝑗, 𝑗, 𝑀) ∈ (ℤ𝑀) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ (ℤ𝑀))
2725, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ (ℤ𝑀))
28 climsuse.5 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
2927, 28sseqtrrdi 3974 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ 𝑍)
3029sseld 3931 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℤ) → (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → 𝑖𝑍))
3114, 15, 30sylc 65 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖𝑍)
32 climsuse.1 . . . . . . . . . . . . . 14 𝑘𝜑
33 nfv 1915 . . . . . . . . . . . . . 14 𝑘 𝑖𝑍
3432, 33nfan 1900 . . . . . . . . . . . . 13 𝑘(𝜑𝑖𝑍)
35 climsuse.2 . . . . . . . . . . . . . . 15 𝑘𝐺
36 nfcv 2892 . . . . . . . . . . . . . . 15 𝑘𝑖
3735, 36nffv 6827 . . . . . . . . . . . . . 14 𝑘(𝐺𝑖)
38 climsuse.3 . . . . . . . . . . . . . . 15 𝑘𝐹
39 climsuse.4 . . . . . . . . . . . . . . . 16 𝑘𝐼
4039, 36nffv 6827 . . . . . . . . . . . . . . 15 𝑘(𝐼𝑖)
4138, 40nffv 6827 . . . . . . . . . . . . . 14 𝑘(𝐹‘(𝐼𝑖))
4237, 41nfeq 2906 . . . . . . . . . . . . 13 𝑘(𝐺𝑖) = (𝐹‘(𝐼𝑖))
4334, 42nfim 1897 . . . . . . . . . . . 12 𝑘((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
44 eleq1 2817 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝑘𝑍𝑖𝑍))
4544anbi2d 630 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝜑𝑘𝑍) ↔ (𝜑𝑖𝑍)))
46 fveq2 6817 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐺𝑘) = (𝐺𝑖))
47 2fveq3 6822 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐹‘(𝐼𝑘)) = (𝐹‘(𝐼𝑖)))
4846, 47eqeq12d 2746 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝐺𝑘) = (𝐹‘(𝐼𝑘)) ↔ (𝐺𝑖) = (𝐹‘(𝐼𝑖))))
4945, 48imbi12d 344 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘))) ↔ ((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))))
50 climsuse.13 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘)))
5143, 49, 50chvarfv 2242 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
5228eleq2i 2821 . . . . . . . . . . . . . . . . 17 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
5352biimpi 216 . . . . . . . . . . . . . . . 16 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
5453adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
55 uzss 12747 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
5654, 55syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ (ℤ𝑀))
57 climsuse.10 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼𝑀) ∈ 𝑍)
58 nfcv 2892 . . . . . . . . . . . . . . . . . . 19 𝑘(𝑖 + 1)
5939, 58nffv 6827 . . . . . . . . . . . . . . . . . 18 𝑘(𝐼‘(𝑖 + 1))
60 nfcv 2892 . . . . . . . . . . . . . . . . . . 19 𝑘
61 nfcv 2892 . . . . . . . . . . . . . . . . . . . 20 𝑘 +
62 nfcv 2892 . . . . . . . . . . . . . . . . . . . 20 𝑘1
6340, 61, 62nfov 7371 . . . . . . . . . . . . . . . . . . 19 𝑘((𝐼𝑖) + 1)
6460, 63nffv 6827 . . . . . . . . . . . . . . . . . 18 𝑘(ℤ‘((𝐼𝑖) + 1))
6559, 64nfel 2907 . . . . . . . . . . . . . . . . 17 𝑘(𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1))
6634, 65nfim 1897 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))
67 fvoveq1 7364 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (𝐼‘(𝑘 + 1)) = (𝐼‘(𝑖 + 1)))
68 fveq2 6817 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝐼𝑘) = (𝐼𝑖))
6968fvoveq1d 7363 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (ℤ‘((𝐼𝑘) + 1)) = (ℤ‘((𝐼𝑖) + 1)))
7067, 69eleq12d 2823 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) ↔ (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1))))
7145, 70imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1))) ↔ ((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))))
72 climsuse.11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
7366, 71, 72chvarfv 2242 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))
7428, 6, 57, 73climsuselem1 45626 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ (ℤ𝑖))
7556, 74sseldd 3933 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ (ℤ𝑀))
7675, 28eleqtrrdi 2840 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ 𝑍)
7776ex 412 . . . . . . . . . . . . 13 (𝜑 → (𝑖𝑍 → (𝐼𝑖) ∈ 𝑍))
7877imdistani 568 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → (𝜑 ∧ (𝐼𝑖) ∈ 𝑍))
7933nfci 2880 . . . . . . . . . . . . . . . 16 𝑘𝑍
8040, 79nfel 2907 . . . . . . . . . . . . . . 15 𝑘(𝐼𝑖) ∈ 𝑍
8132, 80nfan 1900 . . . . . . . . . . . . . 14 𝑘(𝜑 ∧ (𝐼𝑖) ∈ 𝑍)
8241nfel1 2909 . . . . . . . . . . . . . 14 𝑘(𝐹‘(𝐼𝑖)) ∈ ℂ
8381, 82nfim 1897 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)
84 eleq1 2817 . . . . . . . . . . . . . . 15 (𝑘 = (𝐼𝑖) → (𝑘𝑍 ↔ (𝐼𝑖) ∈ 𝑍))
8584anbi2d 630 . . . . . . . . . . . . . 14 (𝑘 = (𝐼𝑖) → ((𝜑𝑘𝑍) ↔ (𝜑 ∧ (𝐼𝑖) ∈ 𝑍)))
86 fveq2 6817 . . . . . . . . . . . . . . 15 (𝑘 = (𝐼𝑖) → (𝐹𝑘) = (𝐹‘(𝐼𝑖)))
8786eleq1d 2814 . . . . . . . . . . . . . 14 (𝑘 = (𝐼𝑖) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝐼𝑖)) ∈ ℂ))
8885, 87imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = (𝐼𝑖) → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)))
89 climsuse.8 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
9040, 83, 88, 89vtoclgf 3522 . . . . . . . . . . . 12 ((𝐼𝑖) ∈ 𝑍 → ((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ))
9176, 78, 90sylc 65 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)
9251, 91eqeltrd 2829 . . . . . . . . . 10 ((𝜑𝑖𝑍) → (𝐺𝑖) ∈ ℂ)
9312, 31, 92syl2anc 584 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐺𝑖) ∈ ℂ)
9412, 31, 51syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
9594fvoveq1d 7363 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐺𝑖) − 𝐴)) = (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)))
96 fveq2 6817 . . . . . . . . . . . . . . . 16 (𝑖 = → (𝐹𝑖) = (𝐹))
9796eleq1d 2814 . . . . . . . . . . . . . . 15 (𝑖 = → ((𝐹𝑖) ∈ ℂ ↔ (𝐹) ∈ ℂ))
9896fvoveq1d 7363 . . . . . . . . . . . . . . . 16 (𝑖 = → (abs‘((𝐹𝑖) − 𝐴)) = (abs‘((𝐹) − 𝐴)))
9998breq1d 5099 . . . . . . . . . . . . . . 15 (𝑖 = → ((abs‘((𝐹𝑖) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹) − 𝐴)) < 𝑥))
10097, 99anbi12d 632 . . . . . . . . . . . . . 14 (𝑖 = → (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) ↔ ((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥)))
101100cbvralvw 3208 . . . . . . . . . . . . 13 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) ↔ ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
102101biimpi 216 . . . . . . . . . . . 12 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) → ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
103102ad2antlr 727 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
104 zre 12464 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
1051043ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℝ)
106 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
107 eluzelz 12734 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → 𝑖 ∈ ℤ)
108 zre 12464 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
109106, 107, 1083syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ ℝ)
110 simp1 1136 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝜑)
1116zred 12569 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℝ)
112110, 111syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ∈ ℝ)
113 simpl2 1193 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ 𝑀𝑗) → 𝑗 ∈ ℤ)
114113zred 12569 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ 𝑀𝑗) → 𝑗 ∈ ℝ)
115112adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ ℝ)
116114, 115ifclda 4509 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → if(𝑀𝑗, 𝑗, 𝑀) ∈ ℝ)
117 max1 13076 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑗, 𝑗, 𝑀))
118112, 105, 117syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ≤ if(𝑀𝑗, 𝑗, 𝑀))
119 eluzle 12737 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → if(𝑀𝑗, 𝑗, 𝑀) ≤ 𝑖)
1201193ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → if(𝑀𝑗, 𝑗, 𝑀) ≤ 𝑖)
121112, 116, 109, 118, 120letrd 11262 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀𝑖)
122110, 6syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ∈ ℤ)
1231073ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ ℤ)
124 eluz 12738 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈ (ℤ𝑀) ↔ 𝑀𝑖))
125122, 123, 124syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝑖 ∈ (ℤ𝑀) ↔ 𝑀𝑖))
126121, 125mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ𝑀))
127126, 28eleqtrrdi 2840 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖𝑍)
128110, 127jca 511 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝜑𝑖𝑍))
129 eluzelre 12735 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑀) → (𝐼𝑖) ∈ ℝ)
130128, 75, 1293syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ ℝ)
131 max2 13078 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ if(𝑀𝑗, 𝑗, 𝑀))
132112, 105, 131syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ≤ if(𝑀𝑗, 𝑗, 𝑀))
133105, 116, 109, 132, 120letrd 11262 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗𝑖)
134 eluzle 12737 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑖) → 𝑖 ≤ (𝐼𝑖))
135128, 74, 1343syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ≤ (𝐼𝑖))
136105, 109, 130, 133, 135letrd 11262 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ≤ (𝐼𝑖))
137 simp2 1137 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℤ)
138 eluzelz 12734 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑖) → (𝐼𝑖) ∈ ℤ)
139128, 74, 1383syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ ℤ)
140 eluz 12738 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℤ ∧ (𝐼𝑖) ∈ ℤ) → ((𝐼𝑖) ∈ (ℤ𝑗) ↔ 𝑗 ≤ (𝐼𝑖)))
141137, 139, 140syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ((𝐼𝑖) ∈ (ℤ𝑗) ↔ 𝑗 ≤ (𝐼𝑖)))
142136, 141mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ (ℤ𝑗))
14312, 13, 15, 142syl3anc 1373 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ (ℤ𝑗))
144 fveq2 6817 . . . . . . . . . . . . . . 15 ( = (𝐼𝑖) → (𝐹) = (𝐹‘(𝐼𝑖)))
145144eleq1d 2814 . . . . . . . . . . . . . 14 ( = (𝐼𝑖) → ((𝐹) ∈ ℂ ↔ (𝐹‘(𝐼𝑖)) ∈ ℂ))
146144fvoveq1d 7363 . . . . . . . . . . . . . . 15 ( = (𝐼𝑖) → (abs‘((𝐹) − 𝐴)) = (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)))
147146breq1d 5099 . . . . . . . . . . . . . 14 ( = (𝐼𝑖) → ((abs‘((𝐹) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥))
148145, 147anbi12d 632 . . . . . . . . . . . . 13 ( = (𝐼𝑖) → (((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝐼𝑖)) ∈ ℂ ∧ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)))
149148rspccva 3574 . . . . . . . . . . . 12 ((∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ∧ (𝐼𝑖) ∈ (ℤ𝑗)) → ((𝐹‘(𝐼𝑖)) ∈ ℂ ∧ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥))
150149simprd 495 . . . . . . . . . . 11 ((∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ∧ (𝐼𝑖) ∈ (ℤ𝑗)) → (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)
151103, 143, 150syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)
15295, 151eqbrtrd 5111 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)
15393, 152jca 511 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
154153ex 412 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → ((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
15511, 154ralrimi 3228 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
156 fveq2 6817 . . . . . . . 8 (𝑙 = if(𝑀𝑗, 𝑗, 𝑀) → (ℤ𝑙) = (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
157156raleqdv 3290 . . . . . . 7 (𝑙 = if(𝑀𝑗, 𝑗, 𝑀) → (∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥) ↔ ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
158157rspcev 3575 . . . . . 6 ((if(𝑀𝑗, 𝑗, 𝑀) ∈ ℤ ∧ ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
1598, 155, 158syl2anc 584 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
160 climsuse.7 . . . . . . . . 9 (𝜑𝐹𝑋)
161 eqidd 2731 . . . . . . . . 9 ((𝜑𝑖 ∈ ℤ) → (𝐹𝑖) = (𝐹𝑖))
162160, 161clim 15393 . . . . . . . 8 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))))
1631, 162mpbid 232 . . . . . . 7 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)))
164163simprd 495 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
165164r19.21bi 3222 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
166159, 165r19.29a 3138 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
167166ex 412 . . 3 (𝜑 → (𝑥 ∈ ℝ+ → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
1684, 167ralrimi 3228 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
169 climsuse.12 . . 3 (𝜑𝐺𝑌)
170 eqidd 2731 . . 3 ((𝜑𝑖 ∈ ℤ) → (𝐺𝑖) = (𝐺𝑖))
171169, 170clim 15393 . 2 (𝜑 → (𝐺𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))))
1723, 168, 171mpbir2and 713 1 (𝜑𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2110  wnfc 2877  wral 3045  wrex 3054  wss 3900  ifcif 4473   class class class wbr 5089  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  1c1 10999   + caddc 11001   < clt 11138  cle 11139  cmin 11336  cz 12460  cuz 12724  +crp 12882  abscabs 15133  cli 15383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-clim 15387
This theorem is referenced by:  sumnnodd  45649  stirlinglem8  46098
  Copyright terms: Public domain W3C validator