Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsuse Structured version   Visualization version   GIF version

Theorem climsuse 42311
 Description: A subsequence 𝐺 of a converging sequence 𝐹, converges to the same limit. 𝐼 is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climsuse.1 𝑘𝜑
climsuse.3 𝑘𝐹
climsuse.2 𝑘𝐺
climsuse.4 𝑘𝐼
climsuse.5 𝑍 = (ℤ𝑀)
climsuse.6 (𝜑𝑀 ∈ ℤ)
climsuse.7 (𝜑𝐹𝑋)
climsuse.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climsuse.9 (𝜑𝐹𝐴)
climsuse.10 (𝜑 → (𝐼𝑀) ∈ 𝑍)
climsuse.11 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
climsuse.12 (𝜑𝐺𝑌)
climsuse.13 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘)))
Assertion
Ref Expression
climsuse (𝜑𝐺𝐴)
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐼(𝑘)   𝑀(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem climsuse
Dummy variables 𝑖 𝑗 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climsuse.9 . . 3 (𝜑𝐹𝐴)
2 climcl 14855 . . 3 (𝐹𝐴𝐴 ∈ ℂ)
31, 2syl 17 . 2 (𝜑𝐴 ∈ ℂ)
4 nfv 1915 . . 3 𝑥𝜑
5 simpllr 775 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑀𝑗) → 𝑗 ∈ ℤ)
6 climsuse.6 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
76ad4antr 731 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ ℤ)
85, 7ifclda 4459 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → if(𝑀𝑗, 𝑗, 𝑀) ∈ ℤ)
9 nfv 1915 . . . . . . . 8 𝑖((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ)
10 nfra1 3183 . . . . . . . 8 𝑖𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)
119, 10nfan 1900 . . . . . . 7 𝑖(((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
12 simp-4l 782 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝜑)
13 simpllr 775 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℤ)
1412, 13jca 515 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝜑𝑗 ∈ ℤ))
15 simpr 488 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
16 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → 𝑀𝑗)
176anim1i 617 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ))
1817adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ))
19 eluz 12252 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ𝑀) ↔ 𝑀𝑗))
2018, 19syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → (𝑗 ∈ (ℤ𝑀) ↔ 𝑀𝑗))
2116, 20mpbird 260 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → 𝑗 ∈ (ℤ𝑀))
22 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ ¬ 𝑀𝑗) → 𝜑)
23 uzid 12253 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2422, 6, 233syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℤ) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ (ℤ𝑀))
2521, 24ifclda 4459 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ) → if(𝑀𝑗, 𝑗, 𝑀) ∈ (ℤ𝑀))
26 uzss 12260 . . . . . . . . . . . . . 14 (if(𝑀𝑗, 𝑗, 𝑀) ∈ (ℤ𝑀) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ (ℤ𝑀))
2725, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ (ℤ𝑀))
28 climsuse.5 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
2927, 28sseqtrrdi 3966 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ 𝑍)
3029sseld 3914 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℤ) → (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → 𝑖𝑍))
3114, 15, 30sylc 65 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖𝑍)
32 climsuse.1 . . . . . . . . . . . . . 14 𝑘𝜑
33 nfv 1915 . . . . . . . . . . . . . 14 𝑘 𝑖𝑍
3432, 33nfan 1900 . . . . . . . . . . . . 13 𝑘(𝜑𝑖𝑍)
35 climsuse.2 . . . . . . . . . . . . . . 15 𝑘𝐺
36 nfcv 2955 . . . . . . . . . . . . . . 15 𝑘𝑖
3735, 36nffv 6660 . . . . . . . . . . . . . 14 𝑘(𝐺𝑖)
38 climsuse.3 . . . . . . . . . . . . . . 15 𝑘𝐹
39 climsuse.4 . . . . . . . . . . . . . . . 16 𝑘𝐼
4039, 36nffv 6660 . . . . . . . . . . . . . . 15 𝑘(𝐼𝑖)
4138, 40nffv 6660 . . . . . . . . . . . . . 14 𝑘(𝐹‘(𝐼𝑖))
4237, 41nfeq 2968 . . . . . . . . . . . . 13 𝑘(𝐺𝑖) = (𝐹‘(𝐼𝑖))
4334, 42nfim 1897 . . . . . . . . . . . 12 𝑘((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
44 eleq1 2877 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝑘𝑍𝑖𝑍))
4544anbi2d 631 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝜑𝑘𝑍) ↔ (𝜑𝑖𝑍)))
46 fveq2 6650 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐺𝑘) = (𝐺𝑖))
47 2fveq3 6655 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐹‘(𝐼𝑘)) = (𝐹‘(𝐼𝑖)))
4846, 47eqeq12d 2814 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝐺𝑘) = (𝐹‘(𝐼𝑘)) ↔ (𝐺𝑖) = (𝐹‘(𝐼𝑖))))
4945, 48imbi12d 348 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘))) ↔ ((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))))
50 climsuse.13 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘)))
5143, 49, 50chvarfv 2240 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
5228eleq2i 2881 . . . . . . . . . . . . . . . . 17 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
5352biimpi 219 . . . . . . . . . . . . . . . 16 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
5453adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
55 uzss 12260 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
5654, 55syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ (ℤ𝑀))
57 climsuse.10 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼𝑀) ∈ 𝑍)
58 nfcv 2955 . . . . . . . . . . . . . . . . . . 19 𝑘(𝑖 + 1)
5939, 58nffv 6660 . . . . . . . . . . . . . . . . . 18 𝑘(𝐼‘(𝑖 + 1))
60 nfcv 2955 . . . . . . . . . . . . . . . . . . 19 𝑘
61 nfcv 2955 . . . . . . . . . . . . . . . . . . . 20 𝑘 +
62 nfcv 2955 . . . . . . . . . . . . . . . . . . . 20 𝑘1
6340, 61, 62nfov 7170 . . . . . . . . . . . . . . . . . . 19 𝑘((𝐼𝑖) + 1)
6460, 63nffv 6660 . . . . . . . . . . . . . . . . . 18 𝑘(ℤ‘((𝐼𝑖) + 1))
6559, 64nfel 2969 . . . . . . . . . . . . . . . . 17 𝑘(𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1))
6634, 65nfim 1897 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))
67 fvoveq1 7163 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (𝐼‘(𝑘 + 1)) = (𝐼‘(𝑖 + 1)))
68 fveq2 6650 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝐼𝑘) = (𝐼𝑖))
6968fvoveq1d 7162 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (ℤ‘((𝐼𝑘) + 1)) = (ℤ‘((𝐼𝑖) + 1)))
7067, 69eleq12d 2884 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) ↔ (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1))))
7145, 70imbi12d 348 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1))) ↔ ((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))))
72 climsuse.11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
7366, 71, 72chvarfv 2240 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))
7428, 6, 57, 73climsuselem1 42310 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ (ℤ𝑖))
7556, 74sseldd 3916 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ (ℤ𝑀))
7675, 28eleqtrrdi 2901 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ 𝑍)
7776ex 416 . . . . . . . . . . . . 13 (𝜑 → (𝑖𝑍 → (𝐼𝑖) ∈ 𝑍))
7877imdistani 572 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → (𝜑 ∧ (𝐼𝑖) ∈ 𝑍))
7933nfci 2939 . . . . . . . . . . . . . . . 16 𝑘𝑍
8040, 79nfel 2969 . . . . . . . . . . . . . . 15 𝑘(𝐼𝑖) ∈ 𝑍
8132, 80nfan 1900 . . . . . . . . . . . . . 14 𝑘(𝜑 ∧ (𝐼𝑖) ∈ 𝑍)
8241nfel1 2971 . . . . . . . . . . . . . 14 𝑘(𝐹‘(𝐼𝑖)) ∈ ℂ
8381, 82nfim 1897 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)
84 eleq1 2877 . . . . . . . . . . . . . . 15 (𝑘 = (𝐼𝑖) → (𝑘𝑍 ↔ (𝐼𝑖) ∈ 𝑍))
8584anbi2d 631 . . . . . . . . . . . . . 14 (𝑘 = (𝐼𝑖) → ((𝜑𝑘𝑍) ↔ (𝜑 ∧ (𝐼𝑖) ∈ 𝑍)))
86 fveq2 6650 . . . . . . . . . . . . . . 15 (𝑘 = (𝐼𝑖) → (𝐹𝑘) = (𝐹‘(𝐼𝑖)))
8786eleq1d 2874 . . . . . . . . . . . . . 14 (𝑘 = (𝐼𝑖) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝐼𝑖)) ∈ ℂ))
8885, 87imbi12d 348 . . . . . . . . . . . . 13 (𝑘 = (𝐼𝑖) → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)))
89 climsuse.8 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
9040, 83, 88, 89vtoclgf 3513 . . . . . . . . . . . 12 ((𝐼𝑖) ∈ 𝑍 → ((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ))
9176, 78, 90sylc 65 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)
9251, 91eqeltrd 2890 . . . . . . . . . 10 ((𝜑𝑖𝑍) → (𝐺𝑖) ∈ ℂ)
9312, 31, 92syl2anc 587 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐺𝑖) ∈ ℂ)
9412, 31, 51syl2anc 587 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
9594fvoveq1d 7162 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐺𝑖) − 𝐴)) = (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)))
96 fveq2 6650 . . . . . . . . . . . . . . . 16 (𝑖 = → (𝐹𝑖) = (𝐹))
9796eleq1d 2874 . . . . . . . . . . . . . . 15 (𝑖 = → ((𝐹𝑖) ∈ ℂ ↔ (𝐹) ∈ ℂ))
9896fvoveq1d 7162 . . . . . . . . . . . . . . . 16 (𝑖 = → (abs‘((𝐹𝑖) − 𝐴)) = (abs‘((𝐹) − 𝐴)))
9998breq1d 5041 . . . . . . . . . . . . . . 15 (𝑖 = → ((abs‘((𝐹𝑖) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹) − 𝐴)) < 𝑥))
10097, 99anbi12d 633 . . . . . . . . . . . . . 14 (𝑖 = → (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) ↔ ((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥)))
101100cbvralvw 3396 . . . . . . . . . . . . 13 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) ↔ ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
102101biimpi 219 . . . . . . . . . . . 12 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) → ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
103102ad2antlr 726 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
104 zre 11980 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
1051043ad2ant2 1131 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℝ)
106 simp3 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
107 eluzelz 12248 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → 𝑖 ∈ ℤ)
108 zre 11980 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
109106, 107, 1083syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ ℝ)
110 simp1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝜑)
1116zred 12082 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℝ)
112110, 111syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ∈ ℝ)
113 simpl2 1189 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ 𝑀𝑗) → 𝑗 ∈ ℤ)
114113zred 12082 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ 𝑀𝑗) → 𝑗 ∈ ℝ)
115112adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ ℝ)
116114, 115ifclda 4459 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → if(𝑀𝑗, 𝑗, 𝑀) ∈ ℝ)
117 max1 12573 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑗, 𝑗, 𝑀))
118112, 105, 117syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ≤ if(𝑀𝑗, 𝑗, 𝑀))
119 eluzle 12251 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → if(𝑀𝑗, 𝑗, 𝑀) ≤ 𝑖)
1201193ad2ant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → if(𝑀𝑗, 𝑗, 𝑀) ≤ 𝑖)
121112, 116, 109, 118, 120letrd 10793 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀𝑖)
122110, 6syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ∈ ℤ)
1231073ad2ant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ ℤ)
124 eluz 12252 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈ (ℤ𝑀) ↔ 𝑀𝑖))
125122, 123, 124syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝑖 ∈ (ℤ𝑀) ↔ 𝑀𝑖))
126121, 125mpbird 260 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ𝑀))
127126, 28eleqtrrdi 2901 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖𝑍)
128110, 127jca 515 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝜑𝑖𝑍))
129 eluzelre 12249 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑀) → (𝐼𝑖) ∈ ℝ)
130128, 75, 1293syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ ℝ)
131 max2 12575 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ if(𝑀𝑗, 𝑗, 𝑀))
132112, 105, 131syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ≤ if(𝑀𝑗, 𝑗, 𝑀))
133105, 116, 109, 132, 120letrd 10793 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗𝑖)
134 eluzle 12251 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑖) → 𝑖 ≤ (𝐼𝑖))
135128, 74, 1343syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ≤ (𝐼𝑖))
136105, 109, 130, 133, 135letrd 10793 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ≤ (𝐼𝑖))
137 simp2 1134 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℤ)
138 eluzelz 12248 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑖) → (𝐼𝑖) ∈ ℤ)
139128, 74, 1383syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ ℤ)
140 eluz 12252 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℤ ∧ (𝐼𝑖) ∈ ℤ) → ((𝐼𝑖) ∈ (ℤ𝑗) ↔ 𝑗 ≤ (𝐼𝑖)))
141137, 139, 140syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ((𝐼𝑖) ∈ (ℤ𝑗) ↔ 𝑗 ≤ (𝐼𝑖)))
142136, 141mpbird 260 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ (ℤ𝑗))
14312, 13, 15, 142syl3anc 1368 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ (ℤ𝑗))
144 fveq2 6650 . . . . . . . . . . . . . . 15 ( = (𝐼𝑖) → (𝐹) = (𝐹‘(𝐼𝑖)))
145144eleq1d 2874 . . . . . . . . . . . . . 14 ( = (𝐼𝑖) → ((𝐹) ∈ ℂ ↔ (𝐹‘(𝐼𝑖)) ∈ ℂ))
146144fvoveq1d 7162 . . . . . . . . . . . . . . 15 ( = (𝐼𝑖) → (abs‘((𝐹) − 𝐴)) = (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)))
147146breq1d 5041 . . . . . . . . . . . . . 14 ( = (𝐼𝑖) → ((abs‘((𝐹) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥))
148145, 147anbi12d 633 . . . . . . . . . . . . 13 ( = (𝐼𝑖) → (((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝐼𝑖)) ∈ ℂ ∧ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)))
149148rspccva 3570 . . . . . . . . . . . 12 ((∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ∧ (𝐼𝑖) ∈ (ℤ𝑗)) → ((𝐹‘(𝐼𝑖)) ∈ ℂ ∧ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥))
150149simprd 499 . . . . . . . . . . 11 ((∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ∧ (𝐼𝑖) ∈ (ℤ𝑗)) → (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)
151103, 143, 150syl2anc 587 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)
15295, 151eqbrtrd 5053 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)
15393, 152jca 515 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
154153ex 416 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → ((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
15511, 154ralrimi 3180 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
156 fveq2 6650 . . . . . . . 8 (𝑙 = if(𝑀𝑗, 𝑗, 𝑀) → (ℤ𝑙) = (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
157156raleqdv 3364 . . . . . . 7 (𝑙 = if(𝑀𝑗, 𝑗, 𝑀) → (∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥) ↔ ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
158157rspcev 3571 . . . . . 6 ((if(𝑀𝑗, 𝑗, 𝑀) ∈ ℤ ∧ ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
1598, 155, 158syl2anc 587 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
160 climsuse.7 . . . . . . . . 9 (𝜑𝐹𝑋)
161 eqidd 2799 . . . . . . . . 9 ((𝜑𝑖 ∈ ℤ) → (𝐹𝑖) = (𝐹𝑖))
162160, 161clim 14850 . . . . . . . 8 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))))
1631, 162mpbid 235 . . . . . . 7 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)))
164163simprd 499 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
165164r19.21bi 3173 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
166159, 165r19.29a 3248 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
167166ex 416 . . 3 (𝜑 → (𝑥 ∈ ℝ+ → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
1684, 167ralrimi 3180 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
169 climsuse.12 . . 3 (𝜑𝐺𝑌)
170 eqidd 2799 . . 3 ((𝜑𝑖 ∈ ℤ) → (𝐺𝑖) = (𝐺𝑖))
171169, 170clim 14850 . 2 (𝜑 → (𝐺𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))))
1723, 168, 171mpbir2and 712 1 (𝜑𝐺𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2111  Ⅎwnfc 2936  ∀wral 3106  ∃wrex 3107   ⊆ wss 3881  ifcif 4425   class class class wbr 5031  ‘cfv 6327  (class class class)co 7140  ℂcc 10531  ℝcr 10532  1c1 10534   + caddc 10536   < clt 10671   ≤ cle 10672   − cmin 10866  ℤcz 11976  ℤ≥cuz 12238  ℝ+crp 12384  abscabs 14592   ⇝ cli 14840 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-n0 11893  df-z 11977  df-uz 12239  df-clim 14844 This theorem is referenced by:  sumnnodd  42333  stirlinglem8  42784
 Copyright terms: Public domain W3C validator