| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | climsuse.9 | . . 3
⊢ (𝜑 → 𝐹 ⇝ 𝐴) | 
| 2 |  | climcl 15536 | . . 3
⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | 
| 3 | 1, 2 | syl 17 | . 2
⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 4 |  | nfv 1913 | . . 3
⊢
Ⅎ𝑥𝜑 | 
| 5 |  | simpllr 775 | . . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑀 ≤ 𝑗) → 𝑗 ∈ ℤ) | 
| 6 |  | climsuse.6 | . . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 7 | 6 | ad4antr 732 | . . . . . . 7
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ ¬ 𝑀 ≤ 𝑗) → 𝑀 ∈ ℤ) | 
| 8 | 5, 7 | ifclda 4560 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧
∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) → if(𝑀 ≤ 𝑗, 𝑗, 𝑀) ∈ ℤ) | 
| 9 |  | nfv 1913 | . . . . . . . 8
⊢
Ⅎ𝑖((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈
ℤ) | 
| 10 |  | nfra1 3283 | . . . . . . . 8
⊢
Ⅎ𝑖∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥) | 
| 11 | 9, 10 | nfan 1898 | . . . . . . 7
⊢
Ⅎ𝑖(((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧
∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) | 
| 12 |  | simp-4l 782 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝜑) | 
| 13 |  | simpllr 775 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℤ) | 
| 14 | 12, 13 | jca 511 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → (𝜑 ∧ 𝑗 ∈ ℤ)) | 
| 15 |  | simpr 484 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) | 
| 16 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ 𝑀 ≤ 𝑗) → 𝑀 ≤ 𝑗) | 
| 17 | 6 | anim1i 615 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ)) | 
| 18 | 17 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ 𝑀 ≤ 𝑗) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ)) | 
| 19 |  | eluz 12893 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈
(ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑗)) | 
| 20 | 18, 19 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ 𝑀 ≤ 𝑗) → (𝑗 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑗)) | 
| 21 | 16, 20 | mpbird 257 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ 𝑀 ≤ 𝑗) → 𝑗 ∈ (ℤ≥‘𝑀)) | 
| 22 |  | simpll 766 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑀 ≤ 𝑗) → 𝜑) | 
| 23 |  | uzid 12894 | . . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) | 
| 24 | 22, 6, 23 | 3syl 18 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ ¬ 𝑀 ≤ 𝑗) → 𝑀 ∈ (ℤ≥‘𝑀)) | 
| 25 | 21, 24 | ifclda 4560 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → if(𝑀 ≤ 𝑗, 𝑗, 𝑀) ∈ (ℤ≥‘𝑀)) | 
| 26 |  | uzss 12902 | . . . . . . . . . . . . . 14
⊢ (if(𝑀 ≤ 𝑗, 𝑗, 𝑀) ∈ (ℤ≥‘𝑀) →
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀)) ⊆
(ℤ≥‘𝑀)) | 
| 27 | 25, 26 | syl 17 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) →
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀)) ⊆
(ℤ≥‘𝑀)) | 
| 28 |  | climsuse.5 | . . . . . . . . . . . . 13
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 29 | 27, 28 | sseqtrrdi 4024 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) →
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀)) ⊆ 𝑍) | 
| 30 | 29 | sseld 3981 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ) → (𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀)) → 𝑖 ∈ 𝑍)) | 
| 31 | 14, 15, 30 | sylc 65 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑖 ∈ 𝑍) | 
| 32 |  | climsuse.1 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘𝜑 | 
| 33 |  | nfv 1913 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑖 ∈ 𝑍 | 
| 34 | 32, 33 | nfan 1898 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑘(𝜑 ∧ 𝑖 ∈ 𝑍) | 
| 35 |  | climsuse.2 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝐺 | 
| 36 |  | nfcv 2904 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝑖 | 
| 37 | 35, 36 | nffv 6915 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝐺‘𝑖) | 
| 38 |  | climsuse.3 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝐹 | 
| 39 |  | climsuse.4 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘𝐼 | 
| 40 | 39, 36 | nffv 6915 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝐼‘𝑖) | 
| 41 | 38, 40 | nffv 6915 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝐹‘(𝐼‘𝑖)) | 
| 42 | 37, 41 | nfeq 2918 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑘(𝐺‘𝑖) = (𝐹‘(𝐼‘𝑖)) | 
| 43 | 34, 42 | nfim 1895 | . . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐺‘𝑖) = (𝐹‘(𝐼‘𝑖))) | 
| 44 |  | eleq1 2828 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → (𝑘 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍)) | 
| 45 | 44 | anbi2d 630 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑖 ∈ 𝑍))) | 
| 46 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → (𝐺‘𝑘) = (𝐺‘𝑖)) | 
| 47 |  | 2fveq3 6910 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → (𝐹‘(𝐼‘𝑘)) = (𝐹‘(𝐼‘𝑖))) | 
| 48 | 46, 47 | eqeq12d 2752 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → ((𝐺‘𝑘) = (𝐹‘(𝐼‘𝑘)) ↔ (𝐺‘𝑖) = (𝐹‘(𝐼‘𝑖)))) | 
| 49 | 45, 48 | imbi12d 344 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘(𝐼‘𝑘))) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐺‘𝑖) = (𝐹‘(𝐼‘𝑖))))) | 
| 50 |  | climsuse.13 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘(𝐼‘𝑘))) | 
| 51 | 43, 49, 50 | chvarfv 2239 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐺‘𝑖) = (𝐹‘(𝐼‘𝑖))) | 
| 52 | 28 | eleq2i 2832 | . . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ 𝑍 ↔ 𝑖 ∈ (ℤ≥‘𝑀)) | 
| 53 | 52 | biimpi 216 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ 𝑍 → 𝑖 ∈ (ℤ≥‘𝑀)) | 
| 54 | 53 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ (ℤ≥‘𝑀)) | 
| 55 |  | uzss 12902 | . . . . . . . . . . . . . . 15
⊢ (𝑖 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑖) ⊆
(ℤ≥‘𝑀)) | 
| 56 | 54, 55 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (ℤ≥‘𝑖) ⊆
(ℤ≥‘𝑀)) | 
| 57 |  | climsuse.10 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐼‘𝑀) ∈ 𝑍) | 
| 58 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(𝑖 + 1) | 
| 59 | 39, 58 | nffv 6915 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(𝐼‘(𝑖 + 1)) | 
| 60 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘ℤ≥ | 
| 61 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘
+ | 
| 62 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘1 | 
| 63 | 40, 61, 62 | nfov 7462 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘((𝐼‘𝑖) + 1) | 
| 64 | 60, 63 | nffv 6915 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(ℤ≥‘((𝐼‘𝑖) + 1)) | 
| 65 | 59, 64 | nfel 2919 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝐼‘(𝑖 + 1)) ∈
(ℤ≥‘((𝐼‘𝑖) + 1)) | 
| 66 | 34, 65 | nfim 1895 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐼‘(𝑖 + 1)) ∈
(ℤ≥‘((𝐼‘𝑖) + 1))) | 
| 67 |  | fvoveq1 7455 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑖 → (𝐼‘(𝑘 + 1)) = (𝐼‘(𝑖 + 1))) | 
| 68 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑖 → (𝐼‘𝑘) = (𝐼‘𝑖)) | 
| 69 | 68 | fvoveq1d 7454 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑖 → (ℤ≥‘((𝐼‘𝑘) + 1)) =
(ℤ≥‘((𝐼‘𝑖) + 1))) | 
| 70 | 67, 69 | eleq12d 2834 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑖 → ((𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘((𝐼‘𝑘) + 1)) ↔ (𝐼‘(𝑖 + 1)) ∈
(ℤ≥‘((𝐼‘𝑖) + 1)))) | 
| 71 | 45, 70 | imbi12d 344 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑖 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘((𝐼‘𝑘) + 1))) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐼‘(𝑖 + 1)) ∈
(ℤ≥‘((𝐼‘𝑖) + 1))))) | 
| 72 |  | climsuse.11 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐼‘(𝑘 + 1)) ∈
(ℤ≥‘((𝐼‘𝑘) + 1))) | 
| 73 | 66, 71, 72 | chvarfv 2239 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐼‘(𝑖 + 1)) ∈
(ℤ≥‘((𝐼‘𝑖) + 1))) | 
| 74 | 28, 6, 57, 73 | climsuselem1 45627 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐼‘𝑖) ∈ (ℤ≥‘𝑖)) | 
| 75 | 56, 74 | sseldd 3983 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐼‘𝑖) ∈ (ℤ≥‘𝑀)) | 
| 76 | 75, 28 | eleqtrrdi 2851 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐼‘𝑖) ∈ 𝑍) | 
| 77 | 76 | ex 412 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑖 ∈ 𝑍 → (𝐼‘𝑖) ∈ 𝑍)) | 
| 78 | 77 | imdistani 568 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝜑 ∧ (𝐼‘𝑖) ∈ 𝑍)) | 
| 79 | 33 | nfci 2892 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘𝑍 | 
| 80 | 40, 79 | nfel 2919 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝐼‘𝑖) ∈ 𝑍 | 
| 81 | 32, 80 | nfan 1898 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝜑 ∧ (𝐼‘𝑖) ∈ 𝑍) | 
| 82 | 41 | nfel1 2921 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝐹‘(𝐼‘𝑖)) ∈ ℂ | 
| 83 | 81, 82 | nfim 1895 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝜑 ∧ (𝐼‘𝑖) ∈ 𝑍) → (𝐹‘(𝐼‘𝑖)) ∈ ℂ) | 
| 84 |  | eleq1 2828 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝐼‘𝑖) → (𝑘 ∈ 𝑍 ↔ (𝐼‘𝑖) ∈ 𝑍)) | 
| 85 | 84 | anbi2d 630 | . . . . . . . . . . . . . 14
⊢ (𝑘 = (𝐼‘𝑖) → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ (𝐼‘𝑖) ∈ 𝑍))) | 
| 86 |  | fveq2 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝐼‘𝑖) → (𝐹‘𝑘) = (𝐹‘(𝐼‘𝑖))) | 
| 87 | 86 | eleq1d 2825 | . . . . . . . . . . . . . 14
⊢ (𝑘 = (𝐼‘𝑖) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘(𝐼‘𝑖)) ∈ ℂ)) | 
| 88 | 85, 87 | imbi12d 344 | . . . . . . . . . . . . 13
⊢ (𝑘 = (𝐼‘𝑖) → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) ↔ ((𝜑 ∧ (𝐼‘𝑖) ∈ 𝑍) → (𝐹‘(𝐼‘𝑖)) ∈ ℂ))) | 
| 89 |  | climsuse.8 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | 
| 90 | 40, 83, 88, 89 | vtoclgf 3568 | . . . . . . . . . . . 12
⊢ ((𝐼‘𝑖) ∈ 𝑍 → ((𝜑 ∧ (𝐼‘𝑖) ∈ 𝑍) → (𝐹‘(𝐼‘𝑖)) ∈ ℂ)) | 
| 91 | 76, 78, 90 | sylc 65 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐹‘(𝐼‘𝑖)) ∈ ℂ) | 
| 92 | 51, 91 | eqeltrd 2840 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐺‘𝑖) ∈ ℂ) | 
| 93 | 12, 31, 92 | syl2anc 584 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → (𝐺‘𝑖) ∈ ℂ) | 
| 94 | 12, 31, 51 | syl2anc 584 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → (𝐺‘𝑖) = (𝐹‘(𝐼‘𝑖))) | 
| 95 | 94 | fvoveq1d 7454 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → (abs‘((𝐺‘𝑖) − 𝐴)) = (abs‘((𝐹‘(𝐼‘𝑖)) − 𝐴))) | 
| 96 |  | fveq2 6905 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = ℎ → (𝐹‘𝑖) = (𝐹‘ℎ)) | 
| 97 | 96 | eleq1d 2825 | . . . . . . . . . . . . . . 15
⊢ (𝑖 = ℎ → ((𝐹‘𝑖) ∈ ℂ ↔ (𝐹‘ℎ) ∈ ℂ)) | 
| 98 | 96 | fvoveq1d 7454 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = ℎ → (abs‘((𝐹‘𝑖) − 𝐴)) = (abs‘((𝐹‘ℎ) − 𝐴))) | 
| 99 | 98 | breq1d 5152 | . . . . . . . . . . . . . . 15
⊢ (𝑖 = ℎ → ((abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘ℎ) − 𝐴)) < 𝑥)) | 
| 100 | 97, 99 | anbi12d 632 | . . . . . . . . . . . . . 14
⊢ (𝑖 = ℎ → (((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥) ↔ ((𝐹‘ℎ) ∈ ℂ ∧ (abs‘((𝐹‘ℎ) − 𝐴)) < 𝑥))) | 
| 101 | 100 | cbvralvw 3236 | . . . . . . . . . . . . 13
⊢
(∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥) ↔ ∀ℎ ∈ (ℤ≥‘𝑗)((𝐹‘ℎ) ∈ ℂ ∧ (abs‘((𝐹‘ℎ) − 𝐴)) < 𝑥)) | 
| 102 | 101 | biimpi 216 | . . . . . . . . . . . 12
⊢
(∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥) → ∀ℎ ∈ (ℤ≥‘𝑗)((𝐹‘ℎ) ∈ ℂ ∧ (abs‘((𝐹‘ℎ) − 𝐴)) < 𝑥)) | 
| 103 | 102 | ad2antlr 727 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → ∀ℎ ∈ (ℤ≥‘𝑗)((𝐹‘ℎ) ∈ ℂ ∧ (abs‘((𝐹‘ℎ) − 𝐴)) < 𝑥)) | 
| 104 |  | zre 12619 | . . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
ℝ) | 
| 105 | 104 | 3ad2ant2 1134 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℝ) | 
| 106 |  | simp3 1138 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) | 
| 107 |  | eluzelz 12889 | . . . . . . . . . . . . . . 15
⊢ (𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀)) → 𝑖 ∈ ℤ) | 
| 108 |  | zre 12619 | . . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ ℤ → 𝑖 ∈
ℝ) | 
| 109 | 106, 107,
108 | 3syl 18 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑖 ∈ ℝ) | 
| 110 |  | simp1 1136 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝜑) | 
| 111 | 6 | zred 12724 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑀 ∈ ℝ) | 
| 112 | 110, 111 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑀 ∈ ℝ) | 
| 113 |  | simpl2 1192 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) ∧ 𝑀 ≤ 𝑗) → 𝑗 ∈ ℤ) | 
| 114 | 113 | zred 12724 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) ∧ 𝑀 ≤ 𝑗) → 𝑗 ∈ ℝ) | 
| 115 | 112 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) ∧ ¬ 𝑀 ≤ 𝑗) → 𝑀 ∈ ℝ) | 
| 116 | 114, 115 | ifclda 4560 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → if(𝑀 ≤ 𝑗, 𝑗, 𝑀) ∈ ℝ) | 
| 117 |  | max1 13228 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ 𝑗, 𝑗, 𝑀)) | 
| 118 | 112, 105,
117 | syl2anc 584 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑀 ≤ if(𝑀 ≤ 𝑗, 𝑗, 𝑀)) | 
| 119 |  | eluzle 12892 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀)) → if(𝑀 ≤ 𝑗, 𝑗, 𝑀) ≤ 𝑖) | 
| 120 | 119 | 3ad2ant3 1135 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → if(𝑀 ≤ 𝑗, 𝑗, 𝑀) ≤ 𝑖) | 
| 121 | 112, 116,
109, 118, 120 | letrd 11419 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑀 ≤ 𝑖) | 
| 122 | 110, 6 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑀 ∈ ℤ) | 
| 123 | 107 | 3ad2ant3 1135 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑖 ∈ ℤ) | 
| 124 |  | eluz 12893 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈
(ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑖)) | 
| 125 | 122, 123,
124 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → (𝑖 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑖)) | 
| 126 | 121, 125 | mpbird 257 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ≥‘𝑀)) | 
| 127 | 126, 28 | eleqtrrdi 2851 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑖 ∈ 𝑍) | 
| 128 | 110, 127 | jca 511 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → (𝜑 ∧ 𝑖 ∈ 𝑍)) | 
| 129 |  | eluzelre 12890 | . . . . . . . . . . . . . . 15
⊢ ((𝐼‘𝑖) ∈ (ℤ≥‘𝑀) → (𝐼‘𝑖) ∈ ℝ) | 
| 130 | 128, 75, 129 | 3syl 18 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → (𝐼‘𝑖) ∈ ℝ) | 
| 131 |  | max2 13230 | . . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ if(𝑀 ≤ 𝑗, 𝑗, 𝑀)) | 
| 132 | 112, 105,
131 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑗 ≤ if(𝑀 ≤ 𝑗, 𝑗, 𝑀)) | 
| 133 | 105, 116,
109, 132, 120 | letrd 11419 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑗 ≤ 𝑖) | 
| 134 |  | eluzle 12892 | . . . . . . . . . . . . . . 15
⊢ ((𝐼‘𝑖) ∈ (ℤ≥‘𝑖) → 𝑖 ≤ (𝐼‘𝑖)) | 
| 135 | 128, 74, 134 | 3syl 18 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑖 ≤ (𝐼‘𝑖)) | 
| 136 | 105, 109,
130, 133, 135 | letrd 11419 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑗 ≤ (𝐼‘𝑖)) | 
| 137 |  | simp2 1137 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℤ) | 
| 138 |  | eluzelz 12889 | . . . . . . . . . . . . . . 15
⊢ ((𝐼‘𝑖) ∈ (ℤ≥‘𝑖) → (𝐼‘𝑖) ∈ ℤ) | 
| 139 | 128, 74, 138 | 3syl 18 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → (𝐼‘𝑖) ∈ ℤ) | 
| 140 |  | eluz 12893 | . . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℤ ∧ (𝐼‘𝑖) ∈ ℤ) → ((𝐼‘𝑖) ∈ (ℤ≥‘𝑗) ↔ 𝑗 ≤ (𝐼‘𝑖))) | 
| 141 | 137, 139,
140 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → ((𝐼‘𝑖) ∈ (ℤ≥‘𝑗) ↔ 𝑗 ≤ (𝐼‘𝑖))) | 
| 142 | 136, 141 | mpbird 257 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → (𝐼‘𝑖) ∈ (ℤ≥‘𝑗)) | 
| 143 | 12, 13, 15, 142 | syl3anc 1372 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → (𝐼‘𝑖) ∈ (ℤ≥‘𝑗)) | 
| 144 |  | fveq2 6905 | . . . . . . . . . . . . . . 15
⊢ (ℎ = (𝐼‘𝑖) → (𝐹‘ℎ) = (𝐹‘(𝐼‘𝑖))) | 
| 145 | 144 | eleq1d 2825 | . . . . . . . . . . . . . 14
⊢ (ℎ = (𝐼‘𝑖) → ((𝐹‘ℎ) ∈ ℂ ↔ (𝐹‘(𝐼‘𝑖)) ∈ ℂ)) | 
| 146 | 144 | fvoveq1d 7454 | . . . . . . . . . . . . . . 15
⊢ (ℎ = (𝐼‘𝑖) → (abs‘((𝐹‘ℎ) − 𝐴)) = (abs‘((𝐹‘(𝐼‘𝑖)) − 𝐴))) | 
| 147 | 146 | breq1d 5152 | . . . . . . . . . . . . . 14
⊢ (ℎ = (𝐼‘𝑖) → ((abs‘((𝐹‘ℎ) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝐼‘𝑖)) − 𝐴)) < 𝑥)) | 
| 148 | 145, 147 | anbi12d 632 | . . . . . . . . . . . . 13
⊢ (ℎ = (𝐼‘𝑖) → (((𝐹‘ℎ) ∈ ℂ ∧ (abs‘((𝐹‘ℎ) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝐼‘𝑖)) ∈ ℂ ∧ (abs‘((𝐹‘(𝐼‘𝑖)) − 𝐴)) < 𝑥))) | 
| 149 | 148 | rspccva 3620 | . . . . . . . . . . . 12
⊢
((∀ℎ ∈
(ℤ≥‘𝑗)((𝐹‘ℎ) ∈ ℂ ∧ (abs‘((𝐹‘ℎ) − 𝐴)) < 𝑥) ∧ (𝐼‘𝑖) ∈ (ℤ≥‘𝑗)) → ((𝐹‘(𝐼‘𝑖)) ∈ ℂ ∧ (abs‘((𝐹‘(𝐼‘𝑖)) − 𝐴)) < 𝑥)) | 
| 150 | 149 | simprd 495 | . . . . . . . . . . 11
⊢
((∀ℎ ∈
(ℤ≥‘𝑗)((𝐹‘ℎ) ∈ ℂ ∧ (abs‘((𝐹‘ℎ) − 𝐴)) < 𝑥) ∧ (𝐼‘𝑖) ∈ (ℤ≥‘𝑗)) → (abs‘((𝐹‘(𝐼‘𝑖)) − 𝐴)) < 𝑥) | 
| 151 | 103, 143,
150 | syl2anc 584 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → (abs‘((𝐹‘(𝐼‘𝑖)) − 𝐴)) < 𝑥) | 
| 152 | 95, 151 | eqbrtrd 5164 | . . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥) | 
| 153 | 93, 152 | jca 511 | . . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑗 ∈ ℤ)
∧ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) → ((𝐺‘𝑖) ∈ ℂ ∧ (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥)) | 
| 154 | 153 | ex 412 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧
∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) → (𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀)) → ((𝐺‘𝑖) ∈ ℂ ∧ (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥))) | 
| 155 | 11, 154 | ralrimi 3256 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧
∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) → ∀𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))((𝐺‘𝑖) ∈ ℂ ∧ (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥)) | 
| 156 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑙 = if(𝑀 ≤ 𝑗, 𝑗, 𝑀) → (ℤ≥‘𝑙) =
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))) | 
| 157 | 156 | raleqdv 3325 | . . . . . . 7
⊢ (𝑙 = if(𝑀 ≤ 𝑗, 𝑗, 𝑀) → (∀𝑖 ∈ (ℤ≥‘𝑙)((𝐺‘𝑖) ∈ ℂ ∧ (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥) ↔ ∀𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))((𝐺‘𝑖) ∈ ℂ ∧ (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥))) | 
| 158 | 157 | rspcev 3621 | . . . . . 6
⊢
((if(𝑀 ≤ 𝑗, 𝑗, 𝑀) ∈ ℤ ∧ ∀𝑖 ∈
(ℤ≥‘if(𝑀 ≤ 𝑗, 𝑗, 𝑀))((𝐺‘𝑖) ∈ ℂ ∧ (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥)) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ≥‘𝑙)((𝐺‘𝑖) ∈ ℂ ∧ (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥)) | 
| 159 | 8, 155, 158 | syl2anc 584 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧
∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ≥‘𝑙)((𝐺‘𝑖) ∈ ℂ ∧ (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥)) | 
| 160 |  | climsuse.7 | . . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝑋) | 
| 161 |  | eqidd 2737 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℤ) → (𝐹‘𝑖) = (𝐹‘𝑖)) | 
| 162 | 160, 161 | clim 15531 | . . . . . . . 8
⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)))) | 
| 163 | 1, 162 | mpbid 232 | . . . . . . 7
⊢ (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥))) | 
| 164 | 163 | simprd 495 | . . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) | 
| 165 | 164 | r19.21bi 3250 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ ℤ
∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − 𝐴)) < 𝑥)) | 
| 166 | 159, 165 | r19.29a 3161 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑙 ∈ ℤ
∀𝑖 ∈
(ℤ≥‘𝑙)((𝐺‘𝑖) ∈ ℂ ∧ (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥)) | 
| 167 | 166 | ex 412 | . . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ →
∃𝑙 ∈ ℤ
∀𝑖 ∈
(ℤ≥‘𝑙)((𝐺‘𝑖) ∈ ℂ ∧ (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥))) | 
| 168 | 4, 167 | ralrimi 3256 | . 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑙 ∈ ℤ ∀𝑖 ∈
(ℤ≥‘𝑙)((𝐺‘𝑖) ∈ ℂ ∧ (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥)) | 
| 169 |  | climsuse.12 | . . 3
⊢ (𝜑 → 𝐺 ∈ 𝑌) | 
| 170 |  | eqidd 2737 | . . 3
⊢ ((𝜑 ∧ 𝑖 ∈ ℤ) → (𝐺‘𝑖) = (𝐺‘𝑖)) | 
| 171 | 169, 170 | clim 15531 | . 2
⊢ (𝜑 → (𝐺 ⇝ 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑙 ∈ ℤ
∀𝑖 ∈
(ℤ≥‘𝑙)((𝐺‘𝑖) ∈ ℂ ∧ (abs‘((𝐺‘𝑖) − 𝐴)) < 𝑥)))) | 
| 172 | 3, 168, 171 | mpbir2and 713 | 1
⊢ (𝜑 → 𝐺 ⇝ 𝐴) |