Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsuse Structured version   Visualization version   GIF version

Theorem climsuse 45604
Description: A subsequence 𝐺 of a converging sequence 𝐹, converges to the same limit. 𝐼 is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climsuse.1 𝑘𝜑
climsuse.3 𝑘𝐹
climsuse.2 𝑘𝐺
climsuse.4 𝑘𝐼
climsuse.5 𝑍 = (ℤ𝑀)
climsuse.6 (𝜑𝑀 ∈ ℤ)
climsuse.7 (𝜑𝐹𝑋)
climsuse.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climsuse.9 (𝜑𝐹𝐴)
climsuse.10 (𝜑 → (𝐼𝑀) ∈ 𝑍)
climsuse.11 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
climsuse.12 (𝜑𝐺𝑌)
climsuse.13 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘)))
Assertion
Ref Expression
climsuse (𝜑𝐺𝐴)
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐼(𝑘)   𝑀(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem climsuse
Dummy variables 𝑖 𝑗 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climsuse.9 . . 3 (𝜑𝐹𝐴)
2 climcl 15520 . . 3 (𝐹𝐴𝐴 ∈ ℂ)
31, 2syl 17 . 2 (𝜑𝐴 ∈ ℂ)
4 nfv 1914 . . 3 𝑥𝜑
5 simpllr 775 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑀𝑗) → 𝑗 ∈ ℤ)
6 climsuse.6 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
76ad4antr 732 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ ℤ)
85, 7ifclda 4541 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → if(𝑀𝑗, 𝑗, 𝑀) ∈ ℤ)
9 nfv 1914 . . . . . . . 8 𝑖((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ)
10 nfra1 3270 . . . . . . . 8 𝑖𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)
119, 10nfan 1899 . . . . . . 7 𝑖(((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
12 simp-4l 782 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝜑)
13 simpllr 775 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℤ)
1412, 13jca 511 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝜑𝑗 ∈ ℤ))
15 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
16 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → 𝑀𝑗)
176anim1i 615 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ))
1817adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ))
19 eluz 12871 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ𝑀) ↔ 𝑀𝑗))
2018, 19syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → (𝑗 ∈ (ℤ𝑀) ↔ 𝑀𝑗))
2116, 20mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → 𝑗 ∈ (ℤ𝑀))
22 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ ¬ 𝑀𝑗) → 𝜑)
23 uzid 12872 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2422, 6, 233syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℤ) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ (ℤ𝑀))
2521, 24ifclda 4541 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ) → if(𝑀𝑗, 𝑗, 𝑀) ∈ (ℤ𝑀))
26 uzss 12880 . . . . . . . . . . . . . 14 (if(𝑀𝑗, 𝑗, 𝑀) ∈ (ℤ𝑀) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ (ℤ𝑀))
2725, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ (ℤ𝑀))
28 climsuse.5 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
2927, 28sseqtrrdi 4005 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ 𝑍)
3029sseld 3962 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℤ) → (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → 𝑖𝑍))
3114, 15, 30sylc 65 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖𝑍)
32 climsuse.1 . . . . . . . . . . . . . 14 𝑘𝜑
33 nfv 1914 . . . . . . . . . . . . . 14 𝑘 𝑖𝑍
3432, 33nfan 1899 . . . . . . . . . . . . 13 𝑘(𝜑𝑖𝑍)
35 climsuse.2 . . . . . . . . . . . . . . 15 𝑘𝐺
36 nfcv 2899 . . . . . . . . . . . . . . 15 𝑘𝑖
3735, 36nffv 6891 . . . . . . . . . . . . . 14 𝑘(𝐺𝑖)
38 climsuse.3 . . . . . . . . . . . . . . 15 𝑘𝐹
39 climsuse.4 . . . . . . . . . . . . . . . 16 𝑘𝐼
4039, 36nffv 6891 . . . . . . . . . . . . . . 15 𝑘(𝐼𝑖)
4138, 40nffv 6891 . . . . . . . . . . . . . 14 𝑘(𝐹‘(𝐼𝑖))
4237, 41nfeq 2913 . . . . . . . . . . . . 13 𝑘(𝐺𝑖) = (𝐹‘(𝐼𝑖))
4334, 42nfim 1896 . . . . . . . . . . . 12 𝑘((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
44 eleq1 2823 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝑘𝑍𝑖𝑍))
4544anbi2d 630 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝜑𝑘𝑍) ↔ (𝜑𝑖𝑍)))
46 fveq2 6881 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐺𝑘) = (𝐺𝑖))
47 2fveq3 6886 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐹‘(𝐼𝑘)) = (𝐹‘(𝐼𝑖)))
4846, 47eqeq12d 2752 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝐺𝑘) = (𝐹‘(𝐼𝑘)) ↔ (𝐺𝑖) = (𝐹‘(𝐼𝑖))))
4945, 48imbi12d 344 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘))) ↔ ((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))))
50 climsuse.13 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘)))
5143, 49, 50chvarfv 2241 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
5228eleq2i 2827 . . . . . . . . . . . . . . . . 17 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
5352biimpi 216 . . . . . . . . . . . . . . . 16 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
5453adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
55 uzss 12880 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
5654, 55syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ (ℤ𝑀))
57 climsuse.10 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼𝑀) ∈ 𝑍)
58 nfcv 2899 . . . . . . . . . . . . . . . . . . 19 𝑘(𝑖 + 1)
5939, 58nffv 6891 . . . . . . . . . . . . . . . . . 18 𝑘(𝐼‘(𝑖 + 1))
60 nfcv 2899 . . . . . . . . . . . . . . . . . . 19 𝑘
61 nfcv 2899 . . . . . . . . . . . . . . . . . . . 20 𝑘 +
62 nfcv 2899 . . . . . . . . . . . . . . . . . . . 20 𝑘1
6340, 61, 62nfov 7440 . . . . . . . . . . . . . . . . . . 19 𝑘((𝐼𝑖) + 1)
6460, 63nffv 6891 . . . . . . . . . . . . . . . . . 18 𝑘(ℤ‘((𝐼𝑖) + 1))
6559, 64nfel 2914 . . . . . . . . . . . . . . . . 17 𝑘(𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1))
6634, 65nfim 1896 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))
67 fvoveq1 7433 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (𝐼‘(𝑘 + 1)) = (𝐼‘(𝑖 + 1)))
68 fveq2 6881 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝐼𝑘) = (𝐼𝑖))
6968fvoveq1d 7432 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (ℤ‘((𝐼𝑘) + 1)) = (ℤ‘((𝐼𝑖) + 1)))
7067, 69eleq12d 2829 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) ↔ (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1))))
7145, 70imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1))) ↔ ((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))))
72 climsuse.11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
7366, 71, 72chvarfv 2241 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))
7428, 6, 57, 73climsuselem1 45603 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ (ℤ𝑖))
7556, 74sseldd 3964 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ (ℤ𝑀))
7675, 28eleqtrrdi 2846 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ 𝑍)
7776ex 412 . . . . . . . . . . . . 13 (𝜑 → (𝑖𝑍 → (𝐼𝑖) ∈ 𝑍))
7877imdistani 568 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → (𝜑 ∧ (𝐼𝑖) ∈ 𝑍))
7933nfci 2887 . . . . . . . . . . . . . . . 16 𝑘𝑍
8040, 79nfel 2914 . . . . . . . . . . . . . . 15 𝑘(𝐼𝑖) ∈ 𝑍
8132, 80nfan 1899 . . . . . . . . . . . . . 14 𝑘(𝜑 ∧ (𝐼𝑖) ∈ 𝑍)
8241nfel1 2916 . . . . . . . . . . . . . 14 𝑘(𝐹‘(𝐼𝑖)) ∈ ℂ
8381, 82nfim 1896 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)
84 eleq1 2823 . . . . . . . . . . . . . . 15 (𝑘 = (𝐼𝑖) → (𝑘𝑍 ↔ (𝐼𝑖) ∈ 𝑍))
8584anbi2d 630 . . . . . . . . . . . . . 14 (𝑘 = (𝐼𝑖) → ((𝜑𝑘𝑍) ↔ (𝜑 ∧ (𝐼𝑖) ∈ 𝑍)))
86 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑘 = (𝐼𝑖) → (𝐹𝑘) = (𝐹‘(𝐼𝑖)))
8786eleq1d 2820 . . . . . . . . . . . . . 14 (𝑘 = (𝐼𝑖) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝐼𝑖)) ∈ ℂ))
8885, 87imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = (𝐼𝑖) → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)))
89 climsuse.8 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
9040, 83, 88, 89vtoclgf 3553 . . . . . . . . . . . 12 ((𝐼𝑖) ∈ 𝑍 → ((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ))
9176, 78, 90sylc 65 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)
9251, 91eqeltrd 2835 . . . . . . . . . 10 ((𝜑𝑖𝑍) → (𝐺𝑖) ∈ ℂ)
9312, 31, 92syl2anc 584 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐺𝑖) ∈ ℂ)
9412, 31, 51syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
9594fvoveq1d 7432 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐺𝑖) − 𝐴)) = (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)))
96 fveq2 6881 . . . . . . . . . . . . . . . 16 (𝑖 = → (𝐹𝑖) = (𝐹))
9796eleq1d 2820 . . . . . . . . . . . . . . 15 (𝑖 = → ((𝐹𝑖) ∈ ℂ ↔ (𝐹) ∈ ℂ))
9896fvoveq1d 7432 . . . . . . . . . . . . . . . 16 (𝑖 = → (abs‘((𝐹𝑖) − 𝐴)) = (abs‘((𝐹) − 𝐴)))
9998breq1d 5134 . . . . . . . . . . . . . . 15 (𝑖 = → ((abs‘((𝐹𝑖) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹) − 𝐴)) < 𝑥))
10097, 99anbi12d 632 . . . . . . . . . . . . . 14 (𝑖 = → (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) ↔ ((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥)))
101100cbvralvw 3224 . . . . . . . . . . . . 13 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) ↔ ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
102101biimpi 216 . . . . . . . . . . . 12 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) → ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
103102ad2antlr 727 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
104 zre 12597 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
1051043ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℝ)
106 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
107 eluzelz 12867 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → 𝑖 ∈ ℤ)
108 zre 12597 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
109106, 107, 1083syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ ℝ)
110 simp1 1136 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝜑)
1116zred 12702 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℝ)
112110, 111syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ∈ ℝ)
113 simpl2 1193 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ 𝑀𝑗) → 𝑗 ∈ ℤ)
114113zred 12702 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ 𝑀𝑗) → 𝑗 ∈ ℝ)
115112adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ ℝ)
116114, 115ifclda 4541 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → if(𝑀𝑗, 𝑗, 𝑀) ∈ ℝ)
117 max1 13206 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑗, 𝑗, 𝑀))
118112, 105, 117syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ≤ if(𝑀𝑗, 𝑗, 𝑀))
119 eluzle 12870 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → if(𝑀𝑗, 𝑗, 𝑀) ≤ 𝑖)
1201193ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → if(𝑀𝑗, 𝑗, 𝑀) ≤ 𝑖)
121112, 116, 109, 118, 120letrd 11397 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀𝑖)
122110, 6syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ∈ ℤ)
1231073ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ ℤ)
124 eluz 12871 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈ (ℤ𝑀) ↔ 𝑀𝑖))
125122, 123, 124syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝑖 ∈ (ℤ𝑀) ↔ 𝑀𝑖))
126121, 125mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ𝑀))
127126, 28eleqtrrdi 2846 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖𝑍)
128110, 127jca 511 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝜑𝑖𝑍))
129 eluzelre 12868 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑀) → (𝐼𝑖) ∈ ℝ)
130128, 75, 1293syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ ℝ)
131 max2 13208 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ if(𝑀𝑗, 𝑗, 𝑀))
132112, 105, 131syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ≤ if(𝑀𝑗, 𝑗, 𝑀))
133105, 116, 109, 132, 120letrd 11397 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗𝑖)
134 eluzle 12870 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑖) → 𝑖 ≤ (𝐼𝑖))
135128, 74, 1343syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ≤ (𝐼𝑖))
136105, 109, 130, 133, 135letrd 11397 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ≤ (𝐼𝑖))
137 simp2 1137 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℤ)
138 eluzelz 12867 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑖) → (𝐼𝑖) ∈ ℤ)
139128, 74, 1383syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ ℤ)
140 eluz 12871 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℤ ∧ (𝐼𝑖) ∈ ℤ) → ((𝐼𝑖) ∈ (ℤ𝑗) ↔ 𝑗 ≤ (𝐼𝑖)))
141137, 139, 140syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ((𝐼𝑖) ∈ (ℤ𝑗) ↔ 𝑗 ≤ (𝐼𝑖)))
142136, 141mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ (ℤ𝑗))
14312, 13, 15, 142syl3anc 1373 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ (ℤ𝑗))
144 fveq2 6881 . . . . . . . . . . . . . . 15 ( = (𝐼𝑖) → (𝐹) = (𝐹‘(𝐼𝑖)))
145144eleq1d 2820 . . . . . . . . . . . . . 14 ( = (𝐼𝑖) → ((𝐹) ∈ ℂ ↔ (𝐹‘(𝐼𝑖)) ∈ ℂ))
146144fvoveq1d 7432 . . . . . . . . . . . . . . 15 ( = (𝐼𝑖) → (abs‘((𝐹) − 𝐴)) = (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)))
147146breq1d 5134 . . . . . . . . . . . . . 14 ( = (𝐼𝑖) → ((abs‘((𝐹) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥))
148145, 147anbi12d 632 . . . . . . . . . . . . 13 ( = (𝐼𝑖) → (((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝐼𝑖)) ∈ ℂ ∧ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)))
149148rspccva 3605 . . . . . . . . . . . 12 ((∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ∧ (𝐼𝑖) ∈ (ℤ𝑗)) → ((𝐹‘(𝐼𝑖)) ∈ ℂ ∧ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥))
150149simprd 495 . . . . . . . . . . 11 ((∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ∧ (𝐼𝑖) ∈ (ℤ𝑗)) → (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)
151103, 143, 150syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)
15295, 151eqbrtrd 5146 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)
15393, 152jca 511 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
154153ex 412 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → ((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
15511, 154ralrimi 3244 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
156 fveq2 6881 . . . . . . . 8 (𝑙 = if(𝑀𝑗, 𝑗, 𝑀) → (ℤ𝑙) = (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
157156raleqdv 3309 . . . . . . 7 (𝑙 = if(𝑀𝑗, 𝑗, 𝑀) → (∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥) ↔ ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
158157rspcev 3606 . . . . . 6 ((if(𝑀𝑗, 𝑗, 𝑀) ∈ ℤ ∧ ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
1598, 155, 158syl2anc 584 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
160 climsuse.7 . . . . . . . . 9 (𝜑𝐹𝑋)
161 eqidd 2737 . . . . . . . . 9 ((𝜑𝑖 ∈ ℤ) → (𝐹𝑖) = (𝐹𝑖))
162160, 161clim 15515 . . . . . . . 8 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))))
1631, 162mpbid 232 . . . . . . 7 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)))
164163simprd 495 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
165164r19.21bi 3238 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
166159, 165r19.29a 3149 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
167166ex 412 . . 3 (𝜑 → (𝑥 ∈ ℝ+ → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
1684, 167ralrimi 3244 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
169 climsuse.12 . . 3 (𝜑𝐺𝑌)
170 eqidd 2737 . . 3 ((𝜑𝑖 ∈ ℤ) → (𝐺𝑖) = (𝐺𝑖))
171169, 170clim 15515 . 2 (𝜑 → (𝐺𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))))
1723, 168, 171mpbir2and 713 1 (𝜑𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2884  wral 3052  wrex 3061  wss 3931  ifcif 4505   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cmin 11471  cz 12593  cuz 12857  +crp 13013  abscabs 15258  cli 15505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-clim 15509
This theorem is referenced by:  sumnnodd  45626  stirlinglem8  46077
  Copyright terms: Public domain W3C validator