Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsuse Structured version   Visualization version   GIF version

Theorem climsuse 45722
Description: A subsequence 𝐺 of a converging sequence 𝐹, converges to the same limit. 𝐼 is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climsuse.1 𝑘𝜑
climsuse.3 𝑘𝐹
climsuse.2 𝑘𝐺
climsuse.4 𝑘𝐼
climsuse.5 𝑍 = (ℤ𝑀)
climsuse.6 (𝜑𝑀 ∈ ℤ)
climsuse.7 (𝜑𝐹𝑋)
climsuse.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climsuse.9 (𝜑𝐹𝐴)
climsuse.10 (𝜑 → (𝐼𝑀) ∈ 𝑍)
climsuse.11 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
climsuse.12 (𝜑𝐺𝑌)
climsuse.13 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘)))
Assertion
Ref Expression
climsuse (𝜑𝐺𝐴)
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐼(𝑘)   𝑀(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem climsuse
Dummy variables 𝑖 𝑗 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climsuse.9 . . 3 (𝜑𝐹𝐴)
2 climcl 15416 . . 3 (𝐹𝐴𝐴 ∈ ℂ)
31, 2syl 17 . 2 (𝜑𝐴 ∈ ℂ)
4 nfv 1915 . . 3 𝑥𝜑
5 simpllr 775 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑀𝑗) → 𝑗 ∈ ℤ)
6 climsuse.6 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
76ad4antr 732 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ ℤ)
85, 7ifclda 4512 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → if(𝑀𝑗, 𝑗, 𝑀) ∈ ℤ)
9 nfv 1915 . . . . . . . 8 𝑖((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ)
10 nfra1 3258 . . . . . . . 8 𝑖𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)
119, 10nfan 1900 . . . . . . 7 𝑖(((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
12 simp-4l 782 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝜑)
13 simpllr 775 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℤ)
1412, 13jca 511 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝜑𝑗 ∈ ℤ))
15 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
16 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → 𝑀𝑗)
176anim1i 615 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ))
1817adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → (𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ))
19 eluz 12756 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ𝑀) ↔ 𝑀𝑗))
2018, 19syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → (𝑗 ∈ (ℤ𝑀) ↔ 𝑀𝑗))
2116, 20mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℤ) ∧ 𝑀𝑗) → 𝑗 ∈ (ℤ𝑀))
22 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ℤ) ∧ ¬ 𝑀𝑗) → 𝜑)
23 uzid 12757 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2422, 6, 233syl 18 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℤ) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ (ℤ𝑀))
2521, 24ifclda 4512 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ) → if(𝑀𝑗, 𝑗, 𝑀) ∈ (ℤ𝑀))
26 uzss 12765 . . . . . . . . . . . . . 14 (if(𝑀𝑗, 𝑗, 𝑀) ∈ (ℤ𝑀) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ (ℤ𝑀))
2725, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ (ℤ𝑀))
28 climsuse.5 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
2927, 28sseqtrrdi 3973 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) ⊆ 𝑍)
3029sseld 3930 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℤ) → (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → 𝑖𝑍))
3114, 15, 30sylc 65 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖𝑍)
32 climsuse.1 . . . . . . . . . . . . . 14 𝑘𝜑
33 nfv 1915 . . . . . . . . . . . . . 14 𝑘 𝑖𝑍
3432, 33nfan 1900 . . . . . . . . . . . . 13 𝑘(𝜑𝑖𝑍)
35 climsuse.2 . . . . . . . . . . . . . . 15 𝑘𝐺
36 nfcv 2896 . . . . . . . . . . . . . . 15 𝑘𝑖
3735, 36nffv 6841 . . . . . . . . . . . . . 14 𝑘(𝐺𝑖)
38 climsuse.3 . . . . . . . . . . . . . . 15 𝑘𝐹
39 climsuse.4 . . . . . . . . . . . . . . . 16 𝑘𝐼
4039, 36nffv 6841 . . . . . . . . . . . . . . 15 𝑘(𝐼𝑖)
4138, 40nffv 6841 . . . . . . . . . . . . . 14 𝑘(𝐹‘(𝐼𝑖))
4237, 41nfeq 2910 . . . . . . . . . . . . 13 𝑘(𝐺𝑖) = (𝐹‘(𝐼𝑖))
4334, 42nfim 1897 . . . . . . . . . . . 12 𝑘((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
44 eleq1 2821 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝑘𝑍𝑖𝑍))
4544anbi2d 630 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝜑𝑘𝑍) ↔ (𝜑𝑖𝑍)))
46 fveq2 6831 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐺𝑘) = (𝐺𝑖))
47 2fveq3 6836 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐹‘(𝐼𝑘)) = (𝐹‘(𝐼𝑖)))
4846, 47eqeq12d 2749 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → ((𝐺𝑘) = (𝐹‘(𝐼𝑘)) ↔ (𝐺𝑖) = (𝐹‘(𝐼𝑖))))
4945, 48imbi12d 344 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘))) ↔ ((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))))
50 climsuse.13 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘)))
5143, 49, 50chvarfv 2245 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
5228eleq2i 2825 . . . . . . . . . . . . . . . . 17 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
5352biimpi 216 . . . . . . . . . . . . . . . 16 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
5453adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑀))
55 uzss 12765 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ𝑀) → (ℤ𝑖) ⊆ (ℤ𝑀))
5654, 55syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (ℤ𝑖) ⊆ (ℤ𝑀))
57 climsuse.10 . . . . . . . . . . . . . . 15 (𝜑 → (𝐼𝑀) ∈ 𝑍)
58 nfcv 2896 . . . . . . . . . . . . . . . . . . 19 𝑘(𝑖 + 1)
5939, 58nffv 6841 . . . . . . . . . . . . . . . . . 18 𝑘(𝐼‘(𝑖 + 1))
60 nfcv 2896 . . . . . . . . . . . . . . . . . . 19 𝑘
61 nfcv 2896 . . . . . . . . . . . . . . . . . . . 20 𝑘 +
62 nfcv 2896 . . . . . . . . . . . . . . . . . . . 20 𝑘1
6340, 61, 62nfov 7385 . . . . . . . . . . . . . . . . . . 19 𝑘((𝐼𝑖) + 1)
6460, 63nffv 6841 . . . . . . . . . . . . . . . . . 18 𝑘(ℤ‘((𝐼𝑖) + 1))
6559, 64nfel 2911 . . . . . . . . . . . . . . . . 17 𝑘(𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1))
6634, 65nfim 1897 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))
67 fvoveq1 7378 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (𝐼‘(𝑘 + 1)) = (𝐼‘(𝑖 + 1)))
68 fveq2 6831 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝐼𝑘) = (𝐼𝑖))
6968fvoveq1d 7377 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (ℤ‘((𝐼𝑘) + 1)) = (ℤ‘((𝐼𝑖) + 1)))
7067, 69eleq12d 2827 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) ↔ (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1))))
7145, 70imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1))) ↔ ((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))))
72 climsuse.11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
7366, 71, 72chvarfv 2245 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (𝐼‘(𝑖 + 1)) ∈ (ℤ‘((𝐼𝑖) + 1)))
7428, 6, 57, 73climsuselem1 45721 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ (ℤ𝑖))
7556, 74sseldd 3932 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ (ℤ𝑀))
7675, 28eleqtrrdi 2844 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → (𝐼𝑖) ∈ 𝑍)
7776ex 412 . . . . . . . . . . . . 13 (𝜑 → (𝑖𝑍 → (𝐼𝑖) ∈ 𝑍))
7877imdistani 568 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → (𝜑 ∧ (𝐼𝑖) ∈ 𝑍))
7933nfci 2884 . . . . . . . . . . . . . . . 16 𝑘𝑍
8040, 79nfel 2911 . . . . . . . . . . . . . . 15 𝑘(𝐼𝑖) ∈ 𝑍
8132, 80nfan 1900 . . . . . . . . . . . . . 14 𝑘(𝜑 ∧ (𝐼𝑖) ∈ 𝑍)
8241nfel1 2913 . . . . . . . . . . . . . 14 𝑘(𝐹‘(𝐼𝑖)) ∈ ℂ
8381, 82nfim 1897 . . . . . . . . . . . . 13 𝑘((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)
84 eleq1 2821 . . . . . . . . . . . . . . 15 (𝑘 = (𝐼𝑖) → (𝑘𝑍 ↔ (𝐼𝑖) ∈ 𝑍))
8584anbi2d 630 . . . . . . . . . . . . . 14 (𝑘 = (𝐼𝑖) → ((𝜑𝑘𝑍) ↔ (𝜑 ∧ (𝐼𝑖) ∈ 𝑍)))
86 fveq2 6831 . . . . . . . . . . . . . . 15 (𝑘 = (𝐼𝑖) → (𝐹𝑘) = (𝐹‘(𝐼𝑖)))
8786eleq1d 2818 . . . . . . . . . . . . . 14 (𝑘 = (𝐼𝑖) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝐼𝑖)) ∈ ℂ))
8885, 87imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = (𝐼𝑖) → (((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)))
89 climsuse.8 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
9040, 83, 88, 89vtoclgf 3523 . . . . . . . . . . . 12 ((𝐼𝑖) ∈ 𝑍 → ((𝜑 ∧ (𝐼𝑖) ∈ 𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ))
9176, 78, 90sylc 65 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐹‘(𝐼𝑖)) ∈ ℂ)
9251, 91eqeltrd 2833 . . . . . . . . . 10 ((𝜑𝑖𝑍) → (𝐺𝑖) ∈ ℂ)
9312, 31, 92syl2anc 584 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐺𝑖) ∈ ℂ)
9412, 31, 51syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐺𝑖) = (𝐹‘(𝐼𝑖)))
9594fvoveq1d 7377 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐺𝑖) − 𝐴)) = (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)))
96 fveq2 6831 . . . . . . . . . . . . . . . 16 (𝑖 = → (𝐹𝑖) = (𝐹))
9796eleq1d 2818 . . . . . . . . . . . . . . 15 (𝑖 = → ((𝐹𝑖) ∈ ℂ ↔ (𝐹) ∈ ℂ))
9896fvoveq1d 7377 . . . . . . . . . . . . . . . 16 (𝑖 = → (abs‘((𝐹𝑖) − 𝐴)) = (abs‘((𝐹) − 𝐴)))
9998breq1d 5105 . . . . . . . . . . . . . . 15 (𝑖 = → ((abs‘((𝐹𝑖) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹) − 𝐴)) < 𝑥))
10097, 99anbi12d 632 . . . . . . . . . . . . . 14 (𝑖 = → (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) ↔ ((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥)))
101100cbvralvw 3212 . . . . . . . . . . . . 13 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) ↔ ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
102101biimpi 216 . . . . . . . . . . . 12 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥) → ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
103102ad2antlr 727 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥))
104 zre 12482 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
1051043ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℝ)
106 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
107 eluzelz 12752 . . . . . . . . . . . . . . 15 (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → 𝑖 ∈ ℤ)
108 zre 12482 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
109106, 107, 1083syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ ℝ)
110 simp1 1136 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝜑)
1116zred 12587 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℝ)
112110, 111syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ∈ ℝ)
113 simpl2 1193 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ 𝑀𝑗) → 𝑗 ∈ ℤ)
114113zred 12587 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ 𝑀𝑗) → 𝑗 ∈ ℝ)
115112adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) ∧ ¬ 𝑀𝑗) → 𝑀 ∈ ℝ)
116114, 115ifclda 4512 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → if(𝑀𝑗, 𝑗, 𝑀) ∈ ℝ)
117 max1 13094 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑗, 𝑗, 𝑀))
118112, 105, 117syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ≤ if(𝑀𝑗, 𝑗, 𝑀))
119 eluzle 12755 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → if(𝑀𝑗, 𝑗, 𝑀) ≤ 𝑖)
1201193ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → if(𝑀𝑗, 𝑗, 𝑀) ≤ 𝑖)
121112, 116, 109, 118, 120letrd 11280 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀𝑖)
122110, 6syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑀 ∈ ℤ)
1231073ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ ℤ)
124 eluz 12756 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ∈ (ℤ𝑀) ↔ 𝑀𝑖))
125122, 123, 124syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝑖 ∈ (ℤ𝑀) ↔ 𝑀𝑖))
126121, 125mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ∈ (ℤ𝑀))
127126, 28eleqtrrdi 2844 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖𝑍)
128110, 127jca 511 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝜑𝑖𝑍))
129 eluzelre 12753 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑀) → (𝐼𝑖) ∈ ℝ)
130128, 75, 1293syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ ℝ)
131 max2 13096 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝑗 ≤ if(𝑀𝑗, 𝑗, 𝑀))
132112, 105, 131syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ≤ if(𝑀𝑗, 𝑗, 𝑀))
133105, 116, 109, 132, 120letrd 11280 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗𝑖)
134 eluzle 12755 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑖) → 𝑖 ≤ (𝐼𝑖))
135128, 74, 1343syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑖 ≤ (𝐼𝑖))
136105, 109, 130, 133, 135letrd 11280 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ≤ (𝐼𝑖))
137 simp2 1137 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → 𝑗 ∈ ℤ)
138 eluzelz 12752 . . . . . . . . . . . . . . 15 ((𝐼𝑖) ∈ (ℤ𝑖) → (𝐼𝑖) ∈ ℤ)
139128, 74, 1383syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ ℤ)
140 eluz 12756 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℤ ∧ (𝐼𝑖) ∈ ℤ) → ((𝐼𝑖) ∈ (ℤ𝑗) ↔ 𝑗 ≤ (𝐼𝑖)))
141137, 139, 140syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ((𝐼𝑖) ∈ (ℤ𝑗) ↔ 𝑗 ≤ (𝐼𝑖)))
142136, 141mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ (ℤ𝑗))
14312, 13, 15, 142syl3anc 1373 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (𝐼𝑖) ∈ (ℤ𝑗))
144 fveq2 6831 . . . . . . . . . . . . . . 15 ( = (𝐼𝑖) → (𝐹) = (𝐹‘(𝐼𝑖)))
145144eleq1d 2818 . . . . . . . . . . . . . 14 ( = (𝐼𝑖) → ((𝐹) ∈ ℂ ↔ (𝐹‘(𝐼𝑖)) ∈ ℂ))
146144fvoveq1d 7377 . . . . . . . . . . . . . . 15 ( = (𝐼𝑖) → (abs‘((𝐹) − 𝐴)) = (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)))
147146breq1d 5105 . . . . . . . . . . . . . 14 ( = (𝐼𝑖) → ((abs‘((𝐹) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥))
148145, 147anbi12d 632 . . . . . . . . . . . . 13 ( = (𝐼𝑖) → (((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ↔ ((𝐹‘(𝐼𝑖)) ∈ ℂ ∧ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)))
149148rspccva 3573 . . . . . . . . . . . 12 ((∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ∧ (𝐼𝑖) ∈ (ℤ𝑗)) → ((𝐹‘(𝐼𝑖)) ∈ ℂ ∧ (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥))
150149simprd 495 . . . . . . . . . . 11 ((∀ ∈ (ℤ𝑗)((𝐹) ∈ ℂ ∧ (abs‘((𝐹) − 𝐴)) < 𝑥) ∧ (𝐼𝑖) ∈ (ℤ𝑗)) → (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)
151103, 143, 150syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐹‘(𝐼𝑖)) − 𝐴)) < 𝑥)
15295, 151eqbrtrd 5117 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)
15393, 152jca 511 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) ∧ 𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))) → ((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
154153ex 412 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → (𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)) → ((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
15511, 154ralrimi 3232 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
156 fveq2 6831 . . . . . . . 8 (𝑙 = if(𝑀𝑗, 𝑗, 𝑀) → (ℤ𝑙) = (ℤ‘if(𝑀𝑗, 𝑗, 𝑀)))
157156raleqdv 3294 . . . . . . 7 (𝑙 = if(𝑀𝑗, 𝑗, 𝑀) → (∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥) ↔ ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
158157rspcev 3574 . . . . . 6 ((if(𝑀𝑗, 𝑗, 𝑀) ∈ ℤ ∧ ∀𝑖 ∈ (ℤ‘if(𝑀𝑗, 𝑗, 𝑀))((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
1598, 155, 158syl2anc 584 . . . . 5 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℤ) ∧ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
160 climsuse.7 . . . . . . . . 9 (𝜑𝐹𝑋)
161 eqidd 2734 . . . . . . . . 9 ((𝜑𝑖 ∈ ℤ) → (𝐹𝑖) = (𝐹𝑖))
162160, 161clim 15411 . . . . . . . 8 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))))
1631, 162mpbid 232 . . . . . . 7 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥)))
164163simprd 495 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
165164r19.21bi 3226 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − 𝐴)) < 𝑥))
166159, 165r19.29a 3142 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
167166ex 412 . . 3 (𝜑 → (𝑥 ∈ ℝ+ → ∃𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥)))
1684, 167ralrimi 3232 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))
169 climsuse.12 . . 3 (𝜑𝐺𝑌)
170 eqidd 2734 . . 3 ((𝜑𝑖 ∈ ℤ) → (𝐺𝑖) = (𝐺𝑖))
171169, 170clim 15411 . 2 (𝜑 → (𝐺𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑙 ∈ ℤ ∀𝑖 ∈ (ℤ𝑙)((𝐺𝑖) ∈ ℂ ∧ (abs‘((𝐺𝑖) − 𝐴)) < 𝑥))))
1723, 168, 171mpbir2and 713 1 (𝜑𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2113  wnfc 2881  wral 3049  wrex 3058  wss 3899  ifcif 4476   class class class wbr 5095  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  1c1 11017   + caddc 11019   < clt 11156  cle 11157  cmin 11354  cz 12478  cuz 12742  +crp 12900  abscabs 15151  cli 15401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-n0 12392  df-z 12479  df-uz 12743  df-clim 15405
This theorem is referenced by:  sumnnodd  45744  stirlinglem8  46193
  Copyright terms: Public domain W3C validator