Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumiunss Structured version   Visualization version   GIF version

Theorem fsumiunss 45530
Description: Sum over a disjoint indexed union, intersected with a finite set 𝐷. Similar to fsumiun 15853, but here 𝐴 and 𝐵 need not be finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumiunss.b ((𝜑𝑥𝐴) → 𝐵𝑉)
fsumiunss.dj (𝜑Disj 𝑥𝐴 𝐵)
fsumiunss.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
fsumiunss.fi (𝜑𝐷 ∈ Fin)
Assertion
Ref Expression
fsumiunss (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝐷,𝑘,𝑥   𝑥,𝑉   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem fsumiunss
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2902 . . . . 5 𝑦(𝐵𝐷)
2 nfcsb1v 3932 . . . . . 6 𝑥𝑦 / 𝑥𝐵
3 nfcv 2902 . . . . . 6 𝑥𝐷
42, 3nfin 4231 . . . . 5 𝑥(𝑦 / 𝑥𝐵𝐷)
5 csbeq1a 3921 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
65ineq1d 4226 . . . . 5 (𝑥 = 𝑦 → (𝐵𝐷) = (𝑦 / 𝑥𝐵𝐷))
71, 4, 6cbviun 5040 . . . 4 𝑥𝐴 (𝐵𝐷) = 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
87sumeq1i 15729 . . 3 Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶
98a1i 11 . 2 (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶)
10 eliun 4999 . . . . . . . . . . . 12 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
1110biimpi 216 . . . . . . . . . . 11 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
12 df-rex 3068 . . . . . . . . . . 11 (∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
1311, 12sylib 218 . . . . . . . . . 10 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
14 nfcv 2902 . . . . . . . . . . . 12 𝑦𝑧
15 nfiu1 5031 . . . . . . . . . . . 12 𝑦 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
1614, 15nfel 2917 . . . . . . . . . . 11 𝑦 𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
17 simpl 482 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑦𝐴)
18 ne0i 4346 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) → (𝑦 / 𝑥𝐵𝐷) ≠ ∅)
1918adantl 481 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 / 𝑥𝐵𝐷) ≠ ∅)
2017, 19jca 511 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦𝐴 ∧ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
21 nfcv 2902 . . . . . . . . . . . . . . 15 𝑥𝑦
22 nfv 1911 . . . . . . . . . . . . . . . 16 𝑥 𝑦𝐴
2322nfci 2890 . . . . . . . . . . . . . . 15 𝑥𝐴
24 nfcv 2902 . . . . . . . . . . . . . . . 16 𝑥
254, 24nfne 3040 . . . . . . . . . . . . . . 15 𝑥(𝑦 / 𝑥𝐵𝐷) ≠ ∅
266neeq1d 2997 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝐵𝐷) ≠ ∅ ↔ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
2721, 23, 25, 26elrabf 3690 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ↔ (𝑦𝐴 ∧ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
2820, 27sylibr 234 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅})
29 simpr 484 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
3028, 29jca 511 . . . . . . . . . . . 12 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
3130a1i 11 . . . . . . . . . . 11 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))))
3216, 31eximd 2213 . . . . . . . . . 10 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → (∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))))
3313, 32mpd 15 . . . . . . . . 9 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
34 df-rex 3068 . . . . . . . . 9 (∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
3533, 34sylibr 234 . . . . . . . 8 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
36 eliun 4999 . . . . . . . 8 (𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
3735, 36sylibr 234 . . . . . . 7 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → 𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
3837rgen 3060 . . . . . 6 𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
39 dfss3 3983 . . . . . 6 ( 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ↔ ∀𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
4038, 39mpbir 231 . . . . 5 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
41 elrabi 3689 . . . . . . 7 (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} → 𝑦𝐴)
4241ssriv 3998 . . . . . 6 {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴
43 iunss1 5010 . . . . . 6 ({𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷))
4442, 43ax-mp 5 . . . . 5 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
4540, 44eqssi 4011 . . . 4 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) = 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
4645sumeq1i 15729 . . 3 Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶
4746a1i 11 . 2 (𝜑 → Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶)
48 fsumiunss.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
49 fsumiunss.dj . . . . 5 (𝜑Disj 𝑥𝐴 𝐵)
50 fsumiunss.fi . . . . 5 (𝜑𝐷 ∈ Fin)
5148, 49, 50disjinfi 45134 . . . 4 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∈ Fin)
52 inss2 4245 . . . . . . 7 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷
5352a1i 11 . . . . . 6 (𝜑 → (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷)
54 ssfi 9211 . . . . . 6 ((𝐷 ∈ Fin ∧ (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷) → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5550, 53, 54syl2anc 584 . . . . 5 (𝜑 → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5655adantr 480 . . . 4 ((𝜑𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}) → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5742a1i 11 . . . . 5 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴)
58 inss1 4244 . . . . . . . 8 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵
5958rgenw 3062 . . . . . . 7 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵
6059a1i 11 . . . . . 6 (𝜑 → ∀𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵)
61 nfcv 2902 . . . . . . . 8 𝑦𝐵
62 eqcom 2741 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
6362imbi1i 349 . . . . . . . . . 10 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵))
64 eqcom 2741 . . . . . . . . . . 11 (𝐵 = 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵 = 𝐵)
6564imbi2i 336 . . . . . . . . . 10 ((𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
6663, 65bitri 275 . . . . . . . . 9 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
675, 66mpbi 230 . . . . . . . 8 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
682, 61, 67cbvdisj 5124 . . . . . . 7 (Disj 𝑦𝐴 𝑦 / 𝑥𝐵Disj 𝑥𝐴 𝐵)
6949, 68sylibr 234 . . . . . 6 (𝜑Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
70 disjss2 5117 . . . . . 6 (∀𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵 → (Disj 𝑦𝐴 𝑦 / 𝑥𝐵Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)))
7160, 69, 70sylc 65 . . . . 5 (𝜑Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷))
72 disjss1 5120 . . . . 5 ({𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴 → (Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → Disj 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)))
7357, 71, 72sylc 65 . . . 4 (𝜑Disj 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
74 simpl 482 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝜑)
7541ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝑦𝐴)
7658sseli 3990 . . . . . . 7 (𝑘 ∈ (𝑦 / 𝑥𝐵𝐷) → 𝑘𝑦 / 𝑥𝐵)
7776adantl 481 . . . . . 6 ((𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑘𝑦 / 𝑥𝐵)
7877adantl 481 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝑘𝑦 / 𝑥𝐵)
79 nfv 1911 . . . . . . . 8 𝑥𝜑
80 nfcv 2902 . . . . . . . . 9 𝑥𝑘
8180, 2nfel 2917 . . . . . . . 8 𝑥 𝑘𝑦 / 𝑥𝐵
8279, 22, 81nf3an 1898 . . . . . . 7 𝑥(𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)
83 nfv 1911 . . . . . . 7 𝑥 𝐶 ∈ ℂ
8482, 83nfim 1893 . . . . . 6 𝑥((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)
85 eleq1w 2821 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
865eleq2d 2824 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘𝐵𝑘𝑦 / 𝑥𝐵))
8785, 863anbi23d 1438 . . . . . . 7 (𝑥 = 𝑦 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)))
8887imbi1d 341 . . . . . 6 (𝑥 = 𝑦 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)))
89 fsumiunss.c . . . . . 6 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
9084, 88, 89chvarfv 2237 . . . . 5 ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)
9174, 75, 78, 90syl3anc 1370 . . . 4 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝐶 ∈ ℂ)
9251, 56, 73, 91fsumiun 15853 . . 3 (𝜑 → Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶)
9367ineq1d 4226 . . . . . 6 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐵𝐷) = (𝐵𝐷))
9493sumeq1d 15732 . . . . 5 (𝑦 = 𝑥 → Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 ∈ (𝐵𝐷)𝐶)
95 nfcv 2902 . . . . . 6 𝑥𝐶
964, 95nfsum 15723 . . . . 5 𝑥Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶
97 nfcv 2902 . . . . 5 𝑦Σ𝑘 ∈ (𝐵𝐷)𝐶
9894, 96, 97cbvsum 15727 . . . 4 Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶
9998a1i 11 . . 3 (𝜑 → Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
10092, 99eqtrd 2774 . 2 (𝜑 → Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
1019, 47, 1003eqtrd 2778 1 (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  csb 3907  cin 3961  wss 3962  c0 4338   ciun 4995  Disj wdisj 5114  Fincfn 8983  cc 11150  Σcsu 15718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-ac2 10500  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-acn 9979  df-ac 10153  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719
This theorem is referenced by:  sge0iunmptlemre  46370
  Copyright terms: Public domain W3C validator