Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumiunss Structured version   Visualization version   GIF version

Theorem fsumiunss 43823
Description: Sum over a disjoint indexed union, intersected with a finite set 𝐷. Similar to fsumiun 15707, but here 𝐴 and 𝐵 need not be finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumiunss.b ((𝜑𝑥𝐴) → 𝐵𝑉)
fsumiunss.dj (𝜑Disj 𝑥𝐴 𝐵)
fsumiunss.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
fsumiunss.fi (𝜑𝐷 ∈ Fin)
Assertion
Ref Expression
fsumiunss (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝐷,𝑘,𝑥   𝑥,𝑉   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem fsumiunss
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2908 . . . . 5 𝑦(𝐵𝐷)
2 nfcsb1v 3881 . . . . . 6 𝑥𝑦 / 𝑥𝐵
3 nfcv 2908 . . . . . 6 𝑥𝐷
42, 3nfin 4177 . . . . 5 𝑥(𝑦 / 𝑥𝐵𝐷)
5 csbeq1a 3870 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
65ineq1d 4172 . . . . 5 (𝑥 = 𝑦 → (𝐵𝐷) = (𝑦 / 𝑥𝐵𝐷))
71, 4, 6cbviun 4997 . . . 4 𝑥𝐴 (𝐵𝐷) = 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
87sumeq1i 15584 . . 3 Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶
98a1i 11 . 2 (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶)
10 eliun 4959 . . . . . . . . . . . 12 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
1110biimpi 215 . . . . . . . . . . 11 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
12 df-rex 3075 . . . . . . . . . . 11 (∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
1311, 12sylib 217 . . . . . . . . . 10 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
14 nfcv 2908 . . . . . . . . . . . 12 𝑦𝑧
15 nfiu1 4989 . . . . . . . . . . . 12 𝑦 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
1614, 15nfel 2922 . . . . . . . . . . 11 𝑦 𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
17 simpl 484 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑦𝐴)
18 ne0i 4295 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) → (𝑦 / 𝑥𝐵𝐷) ≠ ∅)
1918adantl 483 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 / 𝑥𝐵𝐷) ≠ ∅)
2017, 19jca 513 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦𝐴 ∧ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
21 nfcv 2908 . . . . . . . . . . . . . . 15 𝑥𝑦
22 nfv 1918 . . . . . . . . . . . . . . . 16 𝑥 𝑦𝐴
2322nfci 2891 . . . . . . . . . . . . . . 15 𝑥𝐴
24 nfcv 2908 . . . . . . . . . . . . . . . 16 𝑥
254, 24nfne 3046 . . . . . . . . . . . . . . 15 𝑥(𝑦 / 𝑥𝐵𝐷) ≠ ∅
266neeq1d 3004 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝐵𝐷) ≠ ∅ ↔ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
2721, 23, 25, 26elrabf 3642 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ↔ (𝑦𝐴 ∧ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
2820, 27sylibr 233 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅})
29 simpr 486 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
3028, 29jca 513 . . . . . . . . . . . 12 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
3130a1i 11 . . . . . . . . . . 11 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))))
3216, 31eximd 2210 . . . . . . . . . 10 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → (∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))))
3313, 32mpd 15 . . . . . . . . 9 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
34 df-rex 3075 . . . . . . . . 9 (∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
3533, 34sylibr 233 . . . . . . . 8 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
36 eliun 4959 . . . . . . . 8 (𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
3735, 36sylibr 233 . . . . . . 7 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → 𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
3837rgen 3067 . . . . . 6 𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
39 dfss3 3933 . . . . . 6 ( 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ↔ ∀𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
4038, 39mpbir 230 . . . . 5 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
41 elrabi 3640 . . . . . . 7 (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} → 𝑦𝐴)
4241ssriv 3949 . . . . . 6 {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴
43 iunss1 4969 . . . . . 6 ({𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷))
4442, 43ax-mp 5 . . . . 5 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
4540, 44eqssi 3961 . . . 4 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) = 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
4645sumeq1i 15584 . . 3 Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶
4746a1i 11 . 2 (𝜑 → Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶)
48 fsumiunss.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
49 fsumiunss.dj . . . . 5 (𝜑Disj 𝑥𝐴 𝐵)
50 fsumiunss.fi . . . . 5 (𝜑𝐷 ∈ Fin)
5148, 49, 50disjinfi 43419 . . . 4 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∈ Fin)
52 inss2 4190 . . . . . . 7 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷
5352a1i 11 . . . . . 6 (𝜑 → (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷)
54 ssfi 9118 . . . . . 6 ((𝐷 ∈ Fin ∧ (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷) → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5550, 53, 54syl2anc 585 . . . . 5 (𝜑 → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5655adantr 482 . . . 4 ((𝜑𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}) → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5742a1i 11 . . . . 5 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴)
58 inss1 4189 . . . . . . . 8 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵
5958rgenw 3069 . . . . . . 7 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵
6059a1i 11 . . . . . 6 (𝜑 → ∀𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵)
61 nfcv 2908 . . . . . . . 8 𝑦𝐵
62 eqcom 2744 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
6362imbi1i 350 . . . . . . . . . 10 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵))
64 eqcom 2744 . . . . . . . . . . 11 (𝐵 = 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵 = 𝐵)
6564imbi2i 336 . . . . . . . . . 10 ((𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
6663, 65bitri 275 . . . . . . . . 9 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
675, 66mpbi 229 . . . . . . . 8 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
682, 61, 67cbvdisj 5081 . . . . . . 7 (Disj 𝑦𝐴 𝑦 / 𝑥𝐵Disj 𝑥𝐴 𝐵)
6949, 68sylibr 233 . . . . . 6 (𝜑Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
70 disjss2 5074 . . . . . 6 (∀𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵 → (Disj 𝑦𝐴 𝑦 / 𝑥𝐵Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)))
7160, 69, 70sylc 65 . . . . 5 (𝜑Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷))
72 disjss1 5077 . . . . 5 ({𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴 → (Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → Disj 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)))
7357, 71, 72sylc 65 . . . 4 (𝜑Disj 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
74 simpl 484 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝜑)
7541ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝑦𝐴)
7658sseli 3941 . . . . . . 7 (𝑘 ∈ (𝑦 / 𝑥𝐵𝐷) → 𝑘𝑦 / 𝑥𝐵)
7776adantl 483 . . . . . 6 ((𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑘𝑦 / 𝑥𝐵)
7877adantl 483 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝑘𝑦 / 𝑥𝐵)
79 nfv 1918 . . . . . . . 8 𝑥𝜑
80 nfcv 2908 . . . . . . . . 9 𝑥𝑘
8180, 2nfel 2922 . . . . . . . 8 𝑥 𝑘𝑦 / 𝑥𝐵
8279, 22, 81nf3an 1905 . . . . . . 7 𝑥(𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)
83 nfv 1918 . . . . . . 7 𝑥 𝐶 ∈ ℂ
8482, 83nfim 1900 . . . . . 6 𝑥((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)
85 eleq1w 2821 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
865eleq2d 2824 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘𝐵𝑘𝑦 / 𝑥𝐵))
8785, 863anbi23d 1440 . . . . . . 7 (𝑥 = 𝑦 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)))
8887imbi1d 342 . . . . . 6 (𝑥 = 𝑦 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)))
89 fsumiunss.c . . . . . 6 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
9084, 88, 89chvarfv 2234 . . . . 5 ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)
9174, 75, 78, 90syl3anc 1372 . . . 4 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝐶 ∈ ℂ)
9251, 56, 73, 91fsumiun 15707 . . 3 (𝜑 → Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶)
9367ineq1d 4172 . . . . . 6 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐵𝐷) = (𝐵𝐷))
9493sumeq1d 15587 . . . . 5 (𝑦 = 𝑥 → Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 ∈ (𝐵𝐷)𝐶)
95 nfrab1 3427 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}
96 nfcv 2908 . . . . 5 𝑦{𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}
97 nfcv 2908 . . . . . 6 𝑥𝐶
984, 97nfsum 15576 . . . . 5 𝑥Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶
99 nfcv 2908 . . . . 5 𝑦Σ𝑘 ∈ (𝐵𝐷)𝐶
10094, 95, 96, 98, 99cbvsum 15581 . . . 4 Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶
101100a1i 11 . . 3 (𝜑 → Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
10292, 101eqtrd 2777 . 2 (𝜑 → Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
1039, 47, 1023eqtrd 2781 1 (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wne 2944  wral 3065  wrex 3074  {crab 3408  csb 3856  cin 3910  wss 3911  c0 4283   ciun 4955  Disj wdisj 5071  Fincfn 8884  cc 11050  Σcsu 15571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9578  ax-ac2 10400  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129  ax-pre-sup 11130
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-disj 5072  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8649  df-map 8768  df-en 8885  df-dom 8886  df-sdom 8887  df-fin 8888  df-sup 9379  df-oi 9447  df-card 9876  df-acn 9879  df-ac 10053  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-div 11814  df-nn 12155  df-2 12217  df-3 12218  df-n0 12415  df-z 12501  df-uz 12765  df-rp 12917  df-fz 13426  df-fzo 13569  df-seq 13908  df-exp 13969  df-hash 14232  df-cj 14985  df-re 14986  df-im 14987  df-sqrt 15121  df-abs 15122  df-clim 15371  df-sum 15572
This theorem is referenced by:  sge0iunmptlemre  44663
  Copyright terms: Public domain W3C validator