Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumiunss Structured version   Visualization version   GIF version

Theorem fsumiunss 40469
Description: Sum over a disjoint indexed union, intersected with a finite set 𝐷. Similar to fsumiun 14851, but here 𝐴 and 𝐵 need not be finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumiunss.b ((𝜑𝑥𝐴) → 𝐵𝑉)
fsumiunss.dj (𝜑Disj 𝑥𝐴 𝐵)
fsumiunss.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
fsumiunss.fi (𝜑𝐷 ∈ Fin)
Assertion
Ref Expression
fsumiunss (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝐷,𝑘,𝑥   𝑥,𝑉   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem fsumiunss
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2907 . . . . 5 𝑦(𝐵𝐷)
2 nfcsb1v 3709 . . . . . 6 𝑥𝑦 / 𝑥𝐵
3 nfcv 2907 . . . . . 6 𝑥𝐷
42, 3nfin 3982 . . . . 5 𝑥(𝑦 / 𝑥𝐵𝐷)
5 csbeq1a 3702 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
65ineq1d 3977 . . . . 5 (𝑥 = 𝑦 → (𝐵𝐷) = (𝑦 / 𝑥𝐵𝐷))
71, 4, 6cbviun 4715 . . . 4 𝑥𝐴 (𝐵𝐷) = 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
87sumeq1i 14727 . . 3 Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶
98a1i 11 . 2 (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶)
10 eliun 4682 . . . . . . . . . . . 12 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
1110biimpi 207 . . . . . . . . . . 11 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
12 df-rex 3061 . . . . . . . . . . 11 (∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
1311, 12sylib 209 . . . . . . . . . 10 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
14 nfcv 2907 . . . . . . . . . . . 12 𝑦𝑧
15 nfiu1 4708 . . . . . . . . . . . 12 𝑦 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
1614, 15nfel 2920 . . . . . . . . . . 11 𝑦 𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
17 simpl 474 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑦𝐴)
18 ne0i 4087 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) → (𝑦 / 𝑥𝐵𝐷) ≠ ∅)
1918adantl 473 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 / 𝑥𝐵𝐷) ≠ ∅)
2017, 19jca 507 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦𝐴 ∧ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
21 nfcv 2907 . . . . . . . . . . . . . . 15 𝑥𝑦
22 nfv 2009 . . . . . . . . . . . . . . . 16 𝑥 𝑦𝐴
2322nfci 2897 . . . . . . . . . . . . . . 15 𝑥𝐴
24 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑥
254, 24nfne 3037 . . . . . . . . . . . . . . 15 𝑥(𝑦 / 𝑥𝐵𝐷) ≠ ∅
266neeq1d 2996 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝐵𝐷) ≠ ∅ ↔ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
2721, 23, 25, 26elrabf 3517 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ↔ (𝑦𝐴 ∧ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
2820, 27sylibr 225 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅})
29 simpr 477 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
3028, 29jca 507 . . . . . . . . . . . 12 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
3130a1i 11 . . . . . . . . . . 11 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))))
3216, 31eximd 2249 . . . . . . . . . 10 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → (∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))))
3313, 32mpd 15 . . . . . . . . 9 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
34 df-rex 3061 . . . . . . . . 9 (∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
3533, 34sylibr 225 . . . . . . . 8 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
36 eliun 4682 . . . . . . . 8 (𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
3735, 36sylibr 225 . . . . . . 7 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → 𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
3837rgen 3069 . . . . . 6 𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
39 dfss3 3752 . . . . . 6 ( 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ↔ ∀𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
4038, 39mpbir 222 . . . . 5 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
41 elrabi 3516 . . . . . . 7 (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} → 𝑦𝐴)
4241ssriv 3767 . . . . . 6 {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴
43 iunss1 4690 . . . . . 6 ({𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷))
4442, 43ax-mp 5 . . . . 5 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
4540, 44eqssi 3779 . . . 4 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) = 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
4645sumeq1i 14727 . . 3 Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶
4746a1i 11 . 2 (𝜑 → Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶)
48 fsumiunss.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
49 fsumiunss.dj . . . . 5 (𝜑Disj 𝑥𝐴 𝐵)
50 fsumiunss.fi . . . . 5 (𝜑𝐷 ∈ Fin)
5148, 49, 50disjinfi 40051 . . . 4 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∈ Fin)
52 inss2 3995 . . . . . . 7 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷
5352a1i 11 . . . . . 6 (𝜑 → (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷)
54 ssfi 8391 . . . . . 6 ((𝐷 ∈ Fin ∧ (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷) → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5550, 53, 54syl2anc 579 . . . . 5 (𝜑 → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5655adantr 472 . . . 4 ((𝜑𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}) → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5742a1i 11 . . . . 5 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴)
58 inss1 3994 . . . . . . . 8 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵
5958rgenw 3071 . . . . . . 7 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵
6059a1i 11 . . . . . 6 (𝜑 → ∀𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵)
61 nfcv 2907 . . . . . . . 8 𝑦𝐵
62 eqcom 2772 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
6362imbi1i 340 . . . . . . . . . 10 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵))
64 eqcom 2772 . . . . . . . . . . 11 (𝐵 = 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵 = 𝐵)
6564imbi2i 327 . . . . . . . . . 10 ((𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
6663, 65bitri 266 . . . . . . . . 9 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
675, 66mpbi 221 . . . . . . . 8 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
682, 61, 67cbvdisj 4789 . . . . . . 7 (Disj 𝑦𝐴 𝑦 / 𝑥𝐵Disj 𝑥𝐴 𝐵)
6949, 68sylibr 225 . . . . . 6 (𝜑Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
70 disjss2 4782 . . . . . 6 (∀𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵 → (Disj 𝑦𝐴 𝑦 / 𝑥𝐵Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)))
7160, 69, 70sylc 65 . . . . 5 (𝜑Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷))
72 disjss1 4785 . . . . 5 ({𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴 → (Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → Disj 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)))
7357, 71, 72sylc 65 . . . 4 (𝜑Disj 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
74 simpl 474 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝜑)
7541ad2antrl 719 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝑦𝐴)
7658sseli 3759 . . . . . . 7 (𝑘 ∈ (𝑦 / 𝑥𝐵𝐷) → 𝑘𝑦 / 𝑥𝐵)
7776adantl 473 . . . . . 6 ((𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑘𝑦 / 𝑥𝐵)
7877adantl 473 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝑘𝑦 / 𝑥𝐵)
79 nfv 2009 . . . . . . . 8 𝑥𝜑
80 nfcv 2907 . . . . . . . . 9 𝑥𝑘
8180, 2nfel 2920 . . . . . . . 8 𝑥 𝑘𝑦 / 𝑥𝐵
8279, 22, 81nf3an 2000 . . . . . . 7 𝑥(𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)
83 nfv 2009 . . . . . . 7 𝑥 𝐶 ∈ ℂ
8482, 83nfim 1995 . . . . . 6 𝑥((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)
85 eleq1w 2827 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
865eleq2d 2830 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘𝐵𝑘𝑦 / 𝑥𝐵))
8785, 863anbi23d 1563 . . . . . . 7 (𝑥 = 𝑦 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)))
8887imbi1d 332 . . . . . 6 (𝑥 = 𝑦 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)))
89 fsumiunss.c . . . . . 6 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
9084, 88, 89chvar 2368 . . . . 5 ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)
9174, 75, 78, 90syl3anc 1490 . . . 4 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝐶 ∈ ℂ)
9251, 56, 73, 91fsumiun 14851 . . 3 (𝜑 → Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶)
9367ineq1d 3977 . . . . . 6 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐵𝐷) = (𝐵𝐷))
9493sumeq1d 14730 . . . . 5 (𝑦 = 𝑥 → Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 ∈ (𝐵𝐷)𝐶)
95 nfrab1 3270 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}
96 nfcv 2907 . . . . 5 𝑦{𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}
97 nfcv 2907 . . . . . 6 𝑥𝐶
984, 97nfsum 14720 . . . . 5 𝑥Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶
99 nfcv 2907 . . . . 5 𝑦Σ𝑘 ∈ (𝐵𝐷)𝐶
10094, 95, 96, 98, 99cbvsum 14724 . . . 4 Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶
101100a1i 11 . . 3 (𝜑 → Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
10292, 101eqtrd 2799 . 2 (𝜑 → Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
1039, 47, 1023eqtrd 2803 1 (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2937  wral 3055  wrex 3056  {crab 3059  csb 3693  cin 3733  wss 3734  c0 4081   ciun 4678  Disj wdisj 4779  Fincfn 8164  cc 10191  Σcsu 14715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-ac2 9542  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-disj 4780  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-er 7951  df-map 8066  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-sup 8559  df-oi 8626  df-card 9020  df-acn 9023  df-ac 9194  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-n0 11543  df-z 11629  df-uz 11892  df-rp 12034  df-fz 12539  df-fzo 12679  df-seq 13014  df-exp 13073  df-hash 13327  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-clim 14518  df-sum 14716
This theorem is referenced by:  sge0iunmptlemre  41293
  Copyright terms: Public domain W3C validator