Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumiunss Structured version   Visualization version   GIF version

Theorem fsumiunss 43116
Description: Sum over a disjoint indexed union, intersected with a finite set 𝐷. Similar to fsumiun 15533, but here 𝐴 and 𝐵 need not be finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
fsumiunss.b ((𝜑𝑥𝐴) → 𝐵𝑉)
fsumiunss.dj (𝜑Disj 𝑥𝐴 𝐵)
fsumiunss.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
fsumiunss.fi (𝜑𝐷 ∈ Fin)
Assertion
Ref Expression
fsumiunss (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝐷,𝑘,𝑥   𝑥,𝑉   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem fsumiunss
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2907 . . . . 5 𝑦(𝐵𝐷)
2 nfcsb1v 3857 . . . . . 6 𝑥𝑦 / 𝑥𝐵
3 nfcv 2907 . . . . . 6 𝑥𝐷
42, 3nfin 4150 . . . . 5 𝑥(𝑦 / 𝑥𝐵𝐷)
5 csbeq1a 3846 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
65ineq1d 4145 . . . . 5 (𝑥 = 𝑦 → (𝐵𝐷) = (𝑦 / 𝑥𝐵𝐷))
71, 4, 6cbviun 4966 . . . 4 𝑥𝐴 (𝐵𝐷) = 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
87sumeq1i 15410 . . 3 Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶
98a1i 11 . 2 (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶)
10 eliun 4928 . . . . . . . . . . . 12 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
1110biimpi 215 . . . . . . . . . . 11 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
12 df-rex 3070 . . . . . . . . . . 11 (∃𝑦𝐴 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
1311, 12sylib 217 . . . . . . . . . 10 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
14 nfcv 2907 . . . . . . . . . . . 12 𝑦𝑧
15 nfiu1 4958 . . . . . . . . . . . 12 𝑦 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
1614, 15nfel 2921 . . . . . . . . . . 11 𝑦 𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
17 simpl 483 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑦𝐴)
18 ne0i 4268 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) → (𝑦 / 𝑥𝐵𝐷) ≠ ∅)
1918adantl 482 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 / 𝑥𝐵𝐷) ≠ ∅)
2017, 19jca 512 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦𝐴 ∧ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
21 nfcv 2907 . . . . . . . . . . . . . . 15 𝑥𝑦
22 nfv 1917 . . . . . . . . . . . . . . . 16 𝑥 𝑦𝐴
2322nfci 2890 . . . . . . . . . . . . . . 15 𝑥𝐴
24 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑥
254, 24nfne 3045 . . . . . . . . . . . . . . 15 𝑥(𝑦 / 𝑥𝐵𝐷) ≠ ∅
266neeq1d 3003 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝐵𝐷) ≠ ∅ ↔ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
2721, 23, 25, 26elrabf 3620 . . . . . . . . . . . . . 14 (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ↔ (𝑦𝐴 ∧ (𝑦 / 𝑥𝐵𝐷) ≠ ∅))
2820, 27sylibr 233 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅})
29 simpr 485 . . . . . . . . . . . . 13 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
3028, 29jca 512 . . . . . . . . . . . 12 ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
3130a1i 11 . . . . . . . . . . 11 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ((𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))))
3216, 31eximd 2209 . . . . . . . . . 10 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → (∃𝑦(𝑦𝐴𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)) → ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))))
3313, 32mpd 15 . . . . . . . . 9 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
34 df-rex 3070 . . . . . . . . 9 (∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦(𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑧 ∈ (𝑦 / 𝑥𝐵𝐷)))
3533, 34sylibr 233 . . . . . . . 8 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → ∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
36 eliun 4928 . . . . . . . 8 (𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ↔ ∃𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}𝑧 ∈ (𝑦 / 𝑥𝐵𝐷))
3735, 36sylibr 233 . . . . . . 7 (𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → 𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
3837rgen 3074 . . . . . 6 𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
39 dfss3 3909 . . . . . 6 ( 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ↔ ∀𝑧 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝑧 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
4038, 39mpbir 230 . . . . 5 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
41 elrabi 3618 . . . . . . 7 (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} → 𝑦𝐴)
4241ssriv 3925 . . . . . 6 {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴
43 iunss1 4938 . . . . . 6 ({𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷))
4442, 43ax-mp 5 . . . . 5 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)
4540, 44eqssi 3937 . . . 4 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) = 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)
4645sumeq1i 15410 . . 3 Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶
4746a1i 11 . 2 (𝜑 → Σ𝑘 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶)
48 fsumiunss.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
49 fsumiunss.dj . . . . 5 (𝜑Disj 𝑥𝐴 𝐵)
50 fsumiunss.fi . . . . 5 (𝜑𝐷 ∈ Fin)
5148, 49, 50disjinfi 42731 . . . 4 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∈ Fin)
52 inss2 4163 . . . . . . 7 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷
5352a1i 11 . . . . . 6 (𝜑 → (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷)
54 ssfi 8956 . . . . . 6 ((𝐷 ∈ Fin ∧ (𝑦 / 𝑥𝐵𝐷) ⊆ 𝐷) → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5550, 53, 54syl2anc 584 . . . . 5 (𝜑 → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5655adantr 481 . . . 4 ((𝜑𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}) → (𝑦 / 𝑥𝐵𝐷) ∈ Fin)
5742a1i 11 . . . . 5 (𝜑 → {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴)
58 inss1 4162 . . . . . . . 8 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵
5958rgenw 3076 . . . . . . 7 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵
6059a1i 11 . . . . . 6 (𝜑 → ∀𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵)
61 nfcv 2907 . . . . . . . 8 𝑦𝐵
62 eqcom 2745 . . . . . . . . . . 11 (𝑥 = 𝑦𝑦 = 𝑥)
6362imbi1i 350 . . . . . . . . . 10 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵))
64 eqcom 2745 . . . . . . . . . . 11 (𝐵 = 𝑦 / 𝑥𝐵𝑦 / 𝑥𝐵 = 𝐵)
6564imbi2i 336 . . . . . . . . . 10 ((𝑦 = 𝑥𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
6663, 65bitri 274 . . . . . . . . 9 ((𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵) ↔ (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵))
675, 66mpbi 229 . . . . . . . 8 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
682, 61, 67cbvdisj 5049 . . . . . . 7 (Disj 𝑦𝐴 𝑦 / 𝑥𝐵Disj 𝑥𝐴 𝐵)
6949, 68sylibr 233 . . . . . 6 (𝜑Disj 𝑦𝐴 𝑦 / 𝑥𝐵)
70 disjss2 5042 . . . . . 6 (∀𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) ⊆ 𝑦 / 𝑥𝐵 → (Disj 𝑦𝐴 𝑦 / 𝑥𝐵Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷)))
7160, 69, 70sylc 65 . . . . 5 (𝜑Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷))
72 disjss1 5045 . . . . 5 ({𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ⊆ 𝐴 → (Disj 𝑦𝐴 (𝑦 / 𝑥𝐵𝐷) → Disj 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)))
7357, 71, 72sylc 65 . . . 4 (𝜑Disj 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷))
74 simpl 483 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝜑)
7541ad2antrl 725 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝑦𝐴)
7658sseli 3917 . . . . . . 7 (𝑘 ∈ (𝑦 / 𝑥𝐵𝐷) → 𝑘𝑦 / 𝑥𝐵)
7776adantl 482 . . . . . 6 ((𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)) → 𝑘𝑦 / 𝑥𝐵)
7877adantl 482 . . . . 5 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝑘𝑦 / 𝑥𝐵)
79 nfv 1917 . . . . . . . 8 𝑥𝜑
80 nfcv 2907 . . . . . . . . 9 𝑥𝑘
8180, 2nfel 2921 . . . . . . . 8 𝑥 𝑘𝑦 / 𝑥𝐵
8279, 22, 81nf3an 1904 . . . . . . 7 𝑥(𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)
83 nfv 1917 . . . . . . 7 𝑥 𝐶 ∈ ℂ
8482, 83nfim 1899 . . . . . 6 𝑥((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)
85 eleq1w 2821 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
865eleq2d 2824 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘𝐵𝑘𝑦 / 𝑥𝐵))
8785, 863anbi23d 1438 . . . . . . 7 (𝑥 = 𝑦 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵)))
8887imbi1d 342 . . . . . 6 (𝑥 = 𝑦 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)))
89 fsumiunss.c . . . . . 6 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
9084, 88, 89chvarfv 2233 . . . . 5 ((𝜑𝑦𝐴𝑘𝑦 / 𝑥𝐵) → 𝐶 ∈ ℂ)
9174, 75, 78, 90syl3anc 1370 . . . 4 ((𝜑 ∧ (𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} ∧ 𝑘 ∈ (𝑦 / 𝑥𝐵𝐷))) → 𝐶 ∈ ℂ)
9251, 56, 73, 91fsumiun 15533 . . 3 (𝜑 → Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶)
9367ineq1d 4145 . . . . . 6 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐵𝐷) = (𝐵𝐷))
9493sumeq1d 15413 . . . . 5 (𝑦 = 𝑥 → Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑘 ∈ (𝐵𝐷)𝐶)
95 nfrab1 3317 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}
96 nfcv 2907 . . . . 5 𝑦{𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}
97 nfcv 2907 . . . . . 6 𝑥𝐶
984, 97nfsum 15402 . . . . 5 𝑥Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶
99 nfcv 2907 . . . . 5 𝑦Σ𝑘 ∈ (𝐵𝐷)𝐶
10094, 95, 96, 98, 99cbvsum 15407 . . . 4 Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶
101100a1i 11 . . 3 (𝜑 → Σ𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
10292, 101eqtrd 2778 . 2 (𝜑 → Σ𝑘 𝑦 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅} (𝑦 / 𝑥𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
1039, 47, 1023eqtrd 2782 1 (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  csb 3832  cin 3886  wss 3887  c0 4256   ciun 4924  Disj wdisj 5039  Fincfn 8733  cc 10869  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  sge0iunmptlemre  43953
  Copyright terms: Public domain W3C validator