| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nfif.1 | ⊢ Ⅎ𝑥𝜑 |
| nfif.2 | ⊢ Ⅎ𝑥𝐴 |
| nfif.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfifd 4506 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
| 8 | 7 | mptru 1548 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 Ⅎwnfc 2880 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-if 4477 |
| This theorem is referenced by: csbif 4534 nfop 4842 nfrdg 8341 boxcutc 8873 nfoi 9409 nfsum1 15601 nfsum 15602 summolem2a 15626 zsum 15629 sumss 15635 sumss2 15637 fsumcvg2 15638 nfcprod 15820 cbvprod 15824 prodmolem2a 15845 zprod 15848 fprod 15852 fprodntriv 15853 prodss 15858 pcmpt 16808 pcmptdvds 16810 gsummpt1n0 19881 madugsum 22561 mbfpos 25582 mbfposb 25584 i1fposd 25638 isibl2 25697 nfitg 25706 cbvitg 25707 itgss3 25746 itgcn 25776 limcmpt 25814 rlimcnp2 26906 nosupbnd2 27658 noinfbnd2 27673 chirred 32379 cdleme31sn 40502 cdleme32d 40566 cdleme32f 40568 refsum2cn 45162 ssfiunibd 45437 uzub 45556 limsupubuz 45838 icccncfext 46012 fourierdlem86 46317 vonicc 46810 nfafv 47263 nfafv2 47345 |
| Copyright terms: Public domain | W3C validator |