Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 | ⊢ Ⅎ𝑥𝜑 |
nfif.2 | ⊢ Ⅎ𝑥𝐴 |
nfif.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfifd 4488 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
8 | 7 | mptru 1546 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1786 Ⅎwnfc 2887 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-if 4460 |
This theorem is referenced by: csbif 4516 nfop 4820 nfrdg 8245 boxcutc 8729 nfoi 9273 nfsum1 15401 nfsum 15402 nfsumOLD 15403 summolem2a 15427 zsum 15430 sumss 15436 sumss2 15438 fsumcvg2 15439 nfcprod 15621 cbvprod 15625 prodmolem2a 15644 zprod 15647 fprod 15651 fprodntriv 15652 prodss 15657 pcmpt 16593 pcmptdvds 16595 gsummpt1n0 19566 madugsum 21792 mbfpos 24815 mbfposb 24817 i1fposd 24872 isibl2 24931 nfitg 24939 cbvitg 24940 itgss3 24979 itgcn 25009 limcmpt 25047 rlimcnp2 26116 chirred 30757 nosupbnd2 33919 noinfbnd2 33934 cdleme31sn 38394 cdleme32d 38458 cdleme32f 38460 refsum2cn 42581 ssfiunibd 42848 uzub 42971 limsupubuz 43254 icccncfext 43428 fourierdlem86 43733 vonicc 44223 nfafv 44628 nfafv2 44710 |
Copyright terms: Public domain | W3C validator |