![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 | ⊢ Ⅎ𝑥𝜑 |
nfif.2 | ⊢ Ⅎ𝑥𝐴 |
nfif.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfifd 4557 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
8 | 7 | mptru 1548 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1542 Ⅎwnf 1785 Ⅎwnfc 2883 ifcif 4528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-if 4529 |
This theorem is referenced by: csbif 4585 nfop 4889 nfrdg 8413 boxcutc 8934 nfoi 9508 nfsum1 15635 nfsum 15636 summolem2a 15660 zsum 15663 sumss 15669 sumss2 15671 fsumcvg2 15672 nfcprod 15854 cbvprod 15858 prodmolem2a 15877 zprod 15880 fprod 15884 fprodntriv 15885 prodss 15890 pcmpt 16824 pcmptdvds 16826 gsummpt1n0 19832 madugsum 22144 mbfpos 25167 mbfposb 25169 i1fposd 25224 isibl2 25283 nfitg 25291 cbvitg 25292 itgss3 25331 itgcn 25361 limcmpt 25399 rlimcnp2 26468 nosupbnd2 27216 noinfbnd2 27231 chirred 31643 cdleme31sn 39246 cdleme32d 39310 cdleme32f 39312 refsum2cn 43712 ssfiunibd 44009 uzub 44131 limsupubuz 44419 icccncfext 44593 fourierdlem86 44898 vonicc 45391 nfafv 45834 nfafv2 45916 |
Copyright terms: Public domain | W3C validator |