| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nfif.1 | ⊢ Ⅎ𝑥𝜑 |
| nfif.2 | ⊢ Ⅎ𝑥𝐴 |
| nfif.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfifd 4518 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
| 8 | 7 | mptru 1547 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-if 4489 |
| This theorem is referenced by: csbif 4546 nfop 4853 nfrdg 8382 boxcutc 8914 nfoi 9467 nfsum1 15656 nfsum 15657 summolem2a 15681 zsum 15684 sumss 15690 sumss2 15692 fsumcvg2 15693 nfcprod 15875 cbvprod 15879 prodmolem2a 15900 zprod 15903 fprod 15907 fprodntriv 15908 prodss 15913 pcmpt 16863 pcmptdvds 16865 gsummpt1n0 19895 madugsum 22530 mbfpos 25552 mbfposb 25554 i1fposd 25608 isibl2 25667 nfitg 25676 cbvitg 25677 itgss3 25716 itgcn 25746 limcmpt 25784 rlimcnp2 26876 nosupbnd2 27628 noinfbnd2 27643 chirred 32324 cdleme31sn 40374 cdleme32d 40438 cdleme32f 40440 refsum2cn 45032 ssfiunibd 45307 uzub 45427 limsupubuz 45711 icccncfext 45885 fourierdlem86 46190 vonicc 46683 nfafv 47137 nfafv2 47219 |
| Copyright terms: Public domain | W3C validator |