| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nfif.1 | ⊢ Ⅎ𝑥𝜑 |
| nfif.2 | ⊢ Ⅎ𝑥𝐴 |
| nfif.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfifd 4505 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
| 8 | 7 | mptru 1548 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 Ⅎwnfc 2879 ifcif 4475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-if 4476 |
| This theorem is referenced by: csbif 4533 nfop 4841 nfrdg 8333 boxcutc 8865 nfoi 9400 nfsum1 15597 nfsum 15598 summolem2a 15622 zsum 15625 sumss 15631 sumss2 15633 fsumcvg2 15634 nfcprod 15816 cbvprod 15820 prodmolem2a 15841 zprod 15844 fprod 15848 fprodntriv 15849 prodss 15854 pcmpt 16804 pcmptdvds 16806 gsummpt1n0 19878 madugsum 22559 mbfpos 25580 mbfposb 25582 i1fposd 25636 isibl2 25695 nfitg 25704 cbvitg 25705 itgss3 25744 itgcn 25774 limcmpt 25812 rlimcnp2 26904 nosupbnd2 27656 noinfbnd2 27671 chirred 32373 cdleme31sn 40425 cdleme32d 40489 cdleme32f 40491 refsum2cn 45081 ssfiunibd 45356 uzub 45475 limsupubuz 45757 icccncfext 45931 fourierdlem86 46236 vonicc 46729 nfafv 47173 nfafv2 47255 |
| Copyright terms: Public domain | W3C validator |