| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nfif.1 | ⊢ Ⅎ𝑥𝜑 |
| nfif.2 | ⊢ Ⅎ𝑥𝐴 |
| nfif.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfifd 4508 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
| 8 | 7 | mptru 1547 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 ifcif 4478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-if 4479 |
| This theorem is referenced by: csbif 4536 nfop 4843 nfrdg 8343 boxcutc 8875 nfoi 9425 nfsum1 15615 nfsum 15616 summolem2a 15640 zsum 15643 sumss 15649 sumss2 15651 fsumcvg2 15652 nfcprod 15834 cbvprod 15838 prodmolem2a 15859 zprod 15862 fprod 15866 fprodntriv 15867 prodss 15872 pcmpt 16822 pcmptdvds 16824 gsummpt1n0 19862 madugsum 22546 mbfpos 25568 mbfposb 25570 i1fposd 25624 isibl2 25683 nfitg 25692 cbvitg 25693 itgss3 25732 itgcn 25762 limcmpt 25800 rlimcnp2 26892 nosupbnd2 27644 noinfbnd2 27659 chirred 32357 cdleme31sn 40362 cdleme32d 40426 cdleme32f 40428 refsum2cn 45019 ssfiunibd 45294 uzub 45414 limsupubuz 45698 icccncfext 45872 fourierdlem86 46177 vonicc 46670 nfafv 47124 nfafv2 47206 |
| Copyright terms: Public domain | W3C validator |