| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nfif.1 | ⊢ Ⅎ𝑥𝜑 |
| nfif.2 | ⊢ Ⅎ𝑥𝐴 |
| nfif.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfifd 4530 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
| 8 | 7 | mptru 1547 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2883 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-if 4501 |
| This theorem is referenced by: csbif 4558 nfop 4865 nfrdg 8428 boxcutc 8955 nfoi 9528 nfsum1 15706 nfsum 15707 summolem2a 15731 zsum 15734 sumss 15740 sumss2 15742 fsumcvg2 15743 nfcprod 15925 cbvprod 15929 prodmolem2a 15950 zprod 15953 fprod 15957 fprodntriv 15958 prodss 15963 pcmpt 16912 pcmptdvds 16914 gsummpt1n0 19946 madugsum 22581 mbfpos 25604 mbfposb 25606 i1fposd 25660 isibl2 25719 nfitg 25728 cbvitg 25729 itgss3 25768 itgcn 25798 limcmpt 25836 rlimcnp2 26928 nosupbnd2 27680 noinfbnd2 27695 chirred 32376 cdleme31sn 40399 cdleme32d 40463 cdleme32f 40465 refsum2cn 45062 ssfiunibd 45338 uzub 45458 limsupubuz 45742 icccncfext 45916 fourierdlem86 46221 vonicc 46714 nfafv 47165 nfafv2 47247 |
| Copyright terms: Public domain | W3C validator |