![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 | ⊢ Ⅎ𝑥𝜑 |
nfif.2 | ⊢ Ⅎ𝑥𝐴 |
nfif.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfifd 4409 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
8 | 7 | mptru 1529 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1523 Ⅎwnf 1765 Ⅎwnfc 2933 ifcif 4381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-if 4382 |
This theorem is referenced by: csbif 4436 nfop 4726 nfrdg 7902 boxcutc 8353 nfoi 8824 nfsum1 14880 nfsum 14881 summolem2a 14905 zsum 14908 sumss 14914 sumss2 14916 fsumcvg2 14917 nfcprod 15098 cbvprod 15102 prodmolem2a 15121 zprod 15124 fprod 15128 fprodntriv 15129 prodss 15134 pcmpt 16057 pcmptdvds 16059 gsummpt1n0 18805 madugsum 20936 mbfpos 23935 mbfposb 23937 i1fposd 23991 isibl2 24050 nfitg 24058 cbvitg 24059 itgss3 24098 itgcn 24126 limcmpt 24164 rlimcnp2 25226 chirred 29863 nosupbnd2 32825 cdleme31sn 37047 cdleme32d 37111 cdleme32f 37113 refsum2cn 40834 ssfiunibd 41117 uzub 41247 limsupubuz 41536 icccncfext 41711 fourierdlem86 42019 vonicc 42509 nfafv 42851 nfafv2 42933 |
Copyright terms: Public domain | W3C validator |