MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfif Structured version   Visualization version   GIF version

Theorem nfif 4561
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
nfif.1 𝑥𝜑
nfif.2 𝑥𝐴
nfif.3 𝑥𝐵
Assertion
Ref Expression
nfif 𝑥if(𝜑, 𝐴, 𝐵)

Proof of Theorem nfif
StepHypRef Expression
1 nfif.1 . . . 4 𝑥𝜑
21a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 nfif.2 . . . 4 𝑥𝐴
43a1i 11 . . 3 (⊤ → 𝑥𝐴)
5 nfif.3 . . . 4 𝑥𝐵
65a1i 11 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfifd 4560 . 2 (⊤ → 𝑥if(𝜑, 𝐴, 𝐵))
87mptru 1544 1 𝑥if(𝜑, 𝐴, 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wtru 1538  wnf 1780  wnfc 2888  ifcif 4531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-if 4532
This theorem is referenced by:  csbif  4588  nfop  4894  nfrdg  8453  boxcutc  8980  nfoi  9552  nfsum1  15723  nfsum  15724  summolem2a  15748  zsum  15751  sumss  15757  sumss2  15759  fsumcvg2  15760  nfcprod  15942  cbvprod  15946  prodmolem2a  15967  zprod  15970  fprod  15974  fprodntriv  15975  prodss  15980  pcmpt  16926  pcmptdvds  16928  gsummpt1n0  19998  madugsum  22665  mbfpos  25700  mbfposb  25702  i1fposd  25757  isibl2  25816  nfitg  25825  cbvitg  25826  itgss3  25865  itgcn  25895  limcmpt  25933  rlimcnp2  27024  nosupbnd2  27776  noinfbnd2  27791  chirred  32424  cdleme31sn  40363  cdleme32d  40427  cdleme32f  40429  refsum2cn  44976  ssfiunibd  45260  uzub  45381  limsupubuz  45669  icccncfext  45843  fourierdlem86  46148  vonicc  46641  nfafv  47086  nfafv2  47168
  Copyright terms: Public domain W3C validator