| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| nfif.1 | ⊢ Ⅎ𝑥𝜑 |
| nfif.2 | ⊢ Ⅎ𝑥𝐴 |
| nfif.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfifd 4521 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
| 8 | 7 | mptru 1547 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2877 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-if 4492 |
| This theorem is referenced by: csbif 4549 nfop 4856 nfrdg 8385 boxcutc 8917 nfoi 9474 nfsum1 15663 nfsum 15664 summolem2a 15688 zsum 15691 sumss 15697 sumss2 15699 fsumcvg2 15700 nfcprod 15882 cbvprod 15886 prodmolem2a 15907 zprod 15910 fprod 15914 fprodntriv 15915 prodss 15920 pcmpt 16870 pcmptdvds 16872 gsummpt1n0 19902 madugsum 22537 mbfpos 25559 mbfposb 25561 i1fposd 25615 isibl2 25674 nfitg 25683 cbvitg 25684 itgss3 25723 itgcn 25753 limcmpt 25791 rlimcnp2 26883 nosupbnd2 27635 noinfbnd2 27650 chirred 32331 cdleme31sn 40381 cdleme32d 40445 cdleme32f 40447 refsum2cn 45039 ssfiunibd 45314 uzub 45434 limsupubuz 45718 icccncfext 45892 fourierdlem86 46197 vonicc 46690 nfafv 47141 nfafv2 47223 |
| Copyright terms: Public domain | W3C validator |