![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 | ⊢ Ⅎ𝑥𝜑 |
nfif.2 | ⊢ Ⅎ𝑥𝐴 |
nfif.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfifd 4577 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
8 | 7 | mptru 1544 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1538 Ⅎwnf 1781 Ⅎwnfc 2893 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-if 4549 |
This theorem is referenced by: csbif 4605 nfop 4913 nfrdg 8470 boxcutc 8999 nfoi 9583 nfsum1 15738 nfsum 15739 summolem2a 15763 zsum 15766 sumss 15772 sumss2 15774 fsumcvg2 15775 nfcprod 15957 cbvprod 15961 prodmolem2a 15982 zprod 15985 fprod 15989 fprodntriv 15990 prodss 15995 pcmpt 16939 pcmptdvds 16941 gsummpt1n0 20007 madugsum 22670 mbfpos 25705 mbfposb 25707 i1fposd 25762 isibl2 25821 nfitg 25830 cbvitg 25831 itgss3 25870 itgcn 25900 limcmpt 25938 rlimcnp2 27027 nosupbnd2 27779 noinfbnd2 27794 chirred 32427 cdleme31sn 40337 cdleme32d 40401 cdleme32f 40403 refsum2cn 44938 ssfiunibd 45224 uzub 45346 limsupubuz 45634 icccncfext 45808 fourierdlem86 46113 vonicc 46606 nfafv 47051 nfafv2 47133 |
Copyright terms: Public domain | W3C validator |