![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 | ⊢ Ⅎ𝑥𝜑 |
nfif.2 | ⊢ Ⅎ𝑥𝐴 |
nfif.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfifd 4560 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
8 | 7 | mptru 1544 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1538 Ⅎwnf 1780 Ⅎwnfc 2888 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-if 4532 |
This theorem is referenced by: csbif 4588 nfop 4894 nfrdg 8453 boxcutc 8980 nfoi 9552 nfsum1 15723 nfsum 15724 summolem2a 15748 zsum 15751 sumss 15757 sumss2 15759 fsumcvg2 15760 nfcprod 15942 cbvprod 15946 prodmolem2a 15967 zprod 15970 fprod 15974 fprodntriv 15975 prodss 15980 pcmpt 16926 pcmptdvds 16928 gsummpt1n0 19998 madugsum 22665 mbfpos 25700 mbfposb 25702 i1fposd 25757 isibl2 25816 nfitg 25825 cbvitg 25826 itgss3 25865 itgcn 25895 limcmpt 25933 rlimcnp2 27024 nosupbnd2 27776 noinfbnd2 27791 chirred 32424 cdleme31sn 40363 cdleme32d 40427 cdleme32f 40429 refsum2cn 44976 ssfiunibd 45260 uzub 45381 limsupubuz 45669 icccncfext 45843 fourierdlem86 46148 vonicc 46641 nfafv 47086 nfafv2 47168 |
Copyright terms: Public domain | W3C validator |