Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfif | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
nfif.1 | ⊢ Ⅎ𝑥𝜑 |
nfif.2 | ⊢ Ⅎ𝑥𝐴 |
nfif.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfif | ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfif.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | nfif.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
5 | nfif.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfifd 4485 | . 2 ⊢ (⊤ → Ⅎ𝑥if(𝜑, 𝐴, 𝐵)) |
8 | 7 | mptru 1546 | 1 ⊢ Ⅎ𝑥if(𝜑, 𝐴, 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1787 Ⅎwnfc 2886 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-if 4457 |
This theorem is referenced by: csbif 4513 nfop 4817 nfrdg 8216 boxcutc 8687 nfoi 9203 nfsum1 15329 nfsum 15330 nfsumOLD 15331 summolem2a 15355 zsum 15358 sumss 15364 sumss2 15366 fsumcvg2 15367 nfcprod 15549 cbvprod 15553 prodmolem2a 15572 zprod 15575 fprod 15579 fprodntriv 15580 prodss 15585 pcmpt 16521 pcmptdvds 16523 gsummpt1n0 19481 madugsum 21700 mbfpos 24720 mbfposb 24722 i1fposd 24777 isibl2 24836 nfitg 24844 cbvitg 24845 itgss3 24884 itgcn 24914 limcmpt 24952 rlimcnp2 26021 chirred 30658 nosupbnd2 33846 noinfbnd2 33861 cdleme31sn 38321 cdleme32d 38385 cdleme32f 38387 refsum2cn 42470 ssfiunibd 42738 uzub 42861 limsupubuz 43144 icccncfext 43318 fourierdlem86 43623 vonicc 44113 nfafv 44515 nfafv2 44597 |
Copyright terms: Public domain | W3C validator |