MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun6f Structured version   Visualization version   GIF version

Theorem dffun6f 6561
Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dffun6f.1 𝑥𝐴
dffun6f.2 𝑦𝐴
Assertion
Ref Expression
dffun6f (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dffun6f
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun3 6557 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑤𝑢𝑣(𝑤𝐴𝑣𝑣 = 𝑢)))
2 nfcv 2902 . . . . . . 7 𝑦𝑤
3 dffun6f.2 . . . . . . 7 𝑦𝐴
4 nfcv 2902 . . . . . . 7 𝑦𝑣
52, 3, 4nfbr 5195 . . . . . 6 𝑦 𝑤𝐴𝑣
6 nfv 1916 . . . . . 6 𝑣 𝑤𝐴𝑦
7 breq2 5152 . . . . . 6 (𝑣 = 𝑦 → (𝑤𝐴𝑣𝑤𝐴𝑦))
85, 6, 7cbvmow 2596 . . . . 5 (∃*𝑣 𝑤𝐴𝑣 ↔ ∃*𝑦 𝑤𝐴𝑦)
98albii 1820 . . . 4 (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∃*𝑦 𝑤𝐴𝑦)
10 df-mo 2533 . . . . 5 (∃*𝑣 𝑤𝐴𝑣 ↔ ∃𝑢𝑣(𝑤𝐴𝑣𝑣 = 𝑢))
1110albii 1820 . . . 4 (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤𝑢𝑣(𝑤𝐴𝑣𝑣 = 𝑢))
12 nfcv 2902 . . . . . . 7 𝑥𝑤
13 dffun6f.1 . . . . . . 7 𝑥𝐴
14 nfcv 2902 . . . . . . 7 𝑥𝑦
1512, 13, 14nfbr 5195 . . . . . 6 𝑥 𝑤𝐴𝑦
1615nfmov 2553 . . . . 5 𝑥∃*𝑦 𝑤𝐴𝑦
17 nfv 1916 . . . . 5 𝑤∃*𝑦 𝑥𝐴𝑦
18 breq1 5151 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑦𝑥𝐴𝑦))
1918mobidv 2542 . . . . 5 (𝑤 = 𝑥 → (∃*𝑦 𝑤𝐴𝑦 ↔ ∃*𝑦 𝑥𝐴𝑦))
2016, 17, 19cbvalv1 2336 . . . 4 (∀𝑤∃*𝑦 𝑤𝐴𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
219, 11, 203bitr3ri 302 . . 3 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑤𝑢𝑣(𝑤𝐴𝑣𝑣 = 𝑢))
2221anbi2i 622 . 2 ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑤𝑢𝑣(𝑤𝐴𝑣𝑣 = 𝑢)))
231, 22bitr4i 278 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1538  wex 1780  ∃*wmo 2531  wnfc 2882   class class class wbr 5148  Rel wrel 5681  Fun wfun 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-fun 6545
This theorem is referenced by:  dffun6OLD  6562  funopab  6583  funcnvmpt  32326  dffun3f  47891
  Copyright terms: Public domain W3C validator