Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffun6f | Structured version Visualization version GIF version |
Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
dffun6f.1 | ⊢ Ⅎ𝑥𝐴 |
dffun6f.2 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
dffun6f | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun3 6445 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑤∃𝑢∀𝑣(𝑤𝐴𝑣 → 𝑣 = 𝑢))) | |
2 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑦𝑤 | |
3 | dffun6f.2 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
4 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑦𝑣 | |
5 | 2, 3, 4 | nfbr 5121 | . . . . . 6 ⊢ Ⅎ𝑦 𝑤𝐴𝑣 |
6 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑣 𝑤𝐴𝑦 | |
7 | breq2 5078 | . . . . . 6 ⊢ (𝑣 = 𝑦 → (𝑤𝐴𝑣 ↔ 𝑤𝐴𝑦)) | |
8 | 5, 6, 7 | cbvmow 2603 | . . . . 5 ⊢ (∃*𝑣 𝑤𝐴𝑣 ↔ ∃*𝑦 𝑤𝐴𝑦) |
9 | 8 | albii 1822 | . . . 4 ⊢ (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∃*𝑦 𝑤𝐴𝑦) |
10 | df-mo 2540 | . . . . 5 ⊢ (∃*𝑣 𝑤𝐴𝑣 ↔ ∃𝑢∀𝑣(𝑤𝐴𝑣 → 𝑣 = 𝑢)) | |
11 | 10 | albii 1822 | . . . 4 ⊢ (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∃𝑢∀𝑣(𝑤𝐴𝑣 → 𝑣 = 𝑢)) |
12 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
13 | dffun6f.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
14 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
15 | 12, 13, 14 | nfbr 5121 | . . . . . 6 ⊢ Ⅎ𝑥 𝑤𝐴𝑦 |
16 | 15 | nfmov 2560 | . . . . 5 ⊢ Ⅎ𝑥∃*𝑦 𝑤𝐴𝑦 |
17 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑤∃*𝑦 𝑥𝐴𝑦 | |
18 | breq1 5077 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (𝑤𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
19 | 18 | mobidv 2549 | . . . . 5 ⊢ (𝑤 = 𝑥 → (∃*𝑦 𝑤𝐴𝑦 ↔ ∃*𝑦 𝑥𝐴𝑦)) |
20 | 16, 17, 19 | cbvalv1 2338 | . . . 4 ⊢ (∀𝑤∃*𝑦 𝑤𝐴𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
21 | 9, 11, 20 | 3bitr3ri 302 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑤∃𝑢∀𝑣(𝑤𝐴𝑣 → 𝑣 = 𝑢)) |
22 | 21 | anbi2i 623 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑤∃𝑢∀𝑣(𝑤𝐴𝑣 → 𝑣 = 𝑢))) |
23 | 1, 22 | bitr4i 277 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∃*wmo 2538 Ⅎwnfc 2887 class class class wbr 5074 Rel wrel 5594 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-fun 6435 |
This theorem is referenced by: dffun6 6449 funopab 6469 funcnvmpt 31004 dffun3f 46388 |
Copyright terms: Public domain | W3C validator |