Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reusv2lem1 | Structured version Visualization version GIF version |
Description: Lemma for reusv2 5326. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
Ref | Expression |
---|---|
reusv2lem1 | ⊢ (𝐴 ≠ ∅ → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4280 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
2 | nfra1 3144 | . . . . 5 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐴 𝑥 = 𝐵 | |
3 | 2 | nfmov 2560 | . . . 4 ⊢ Ⅎ𝑦∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 |
4 | rsp 3131 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → (𝑦 ∈ 𝐴 → 𝑥 = 𝐵)) | |
5 | 4 | com12 32 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵)) |
6 | 5 | alrimiv 1930 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥(∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵)) |
7 | mo2icl 3649 | . . . . 5 ⊢ (∀𝑥(∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵) → ∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
9 | 3, 8 | exlimi 2210 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
10 | 1, 9 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → ∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
11 | df-eu 2569 | . . 3 ⊢ (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ (∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | |
12 | 11 | rbaib 539 | . 2 ⊢ (∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
13 | 10, 12 | syl 17 | 1 ⊢ (𝐴 ≠ ∅ → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃*wmo 2538 ∃!weu 2568 ≠ wne 2943 ∀wral 3064 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-v 3434 df-dif 3890 df-nul 4257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |