| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reusv2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for reusv2 5403. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| Ref | Expression |
|---|---|
| reusv2lem1 | ⊢ (𝐴 ≠ ∅ → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4353 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
| 2 | nfra1 3284 | . . . . 5 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐴 𝑥 = 𝐵 | |
| 3 | 2 | nfmov 2560 | . . . 4 ⊢ Ⅎ𝑦∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 |
| 4 | rsp 3247 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → (𝑦 ∈ 𝐴 → 𝑥 = 𝐵)) | |
| 5 | 4 | com12 32 | . . . . . 6 ⊢ (𝑦 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵)) |
| 6 | 5 | alrimiv 1927 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥(∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵)) |
| 7 | mo2icl 3720 | . . . . 5 ⊢ (∀𝑥(∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵) → ∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 9 | 3, 8 | exlimi 2217 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 10 | 1, 9 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → ∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 11 | df-eu 2569 | . . 3 ⊢ (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ (∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | |
| 12 | 11 | rbaib 538 | . 2 ⊢ (∃*𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 13 | 10, 12 | syl 17 | 1 ⊢ (𝐴 ≠ ∅ → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃*wmo 2538 ∃!weu 2568 ≠ wne 2940 ∀wral 3061 ∅c0 4333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-v 3482 df-dif 3954 df-nul 4334 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |