Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmpo2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
Ref | Expression |
---|---|
nfmpo2 | ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 7218 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
2 | nfoprab2 7273 | . 2 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 ∈ wcel 2110 Ⅎwnfc 2884 {coprab 7214 ∈ cmpo 7215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-oprab 7217 df-mpo 7218 |
This theorem is referenced by: ovmpos 7357 ov2gf 7358 ovmpodxf 7359 ovmpodf 7365 ovmpodv2 7367 xpcomco 8735 mapxpen 8812 pwfseqlem2 10273 pwfseqlem4a 10275 pwfseqlem4 10276 gsum2d2lem 19358 gsum2d2 19359 gsumcom2 19360 dprd2d2 19431 cnmpt21 22568 cnmpt2t 22570 cnmptcom 22575 cnmpt2k 22585 xkocnv 22711 finxpreclem2 35298 finxpreclem6 35304 mnringmulrcld 41519 fmuldfeq 42799 smflimlem6 43983 ovmpordxf 45347 |
Copyright terms: Public domain | W3C validator |