MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpo2 Structured version   Visualization version   GIF version

Theorem nfmpo2 7356
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo2 𝑦(𝑥𝐴, 𝑦𝐵𝐶)

Proof of Theorem nfmpo2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 7280 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 nfoprab2 7337 . 2 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2nfcxfr 2905 1 𝑦(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  wnfc 2887  {coprab 7276  cmpo 7277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-oprab 7279  df-mpo 7280
This theorem is referenced by:  ovmpos  7421  ov2gf  7422  ovmpodxf  7423  ovmpodf  7429  ovmpodv2  7431  xpcomco  8849  mapxpen  8930  pwfseqlem2  10415  pwfseqlem4a  10417  pwfseqlem4  10418  gsum2d2lem  19574  gsum2d2  19575  gsumcom2  19576  dprd2d2  19647  cnmpt21  22822  cnmpt2t  22824  cnmptcom  22829  cnmpt2k  22839  xkocnv  22965  finxpreclem2  35561  finxpreclem6  35567  mnringmulrcld  41846  fmuldfeq  43124  smflimlem6  44311  ovmpordxf  45674
  Copyright terms: Public domain W3C validator