![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfmpo2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
Ref | Expression |
---|---|
nfmpo2 | ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 7421 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
2 | nfoprab2 7479 | . 2 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1534 ∈ wcel 2099 Ⅎwnfc 2876 {coprab 7417 ∈ cmpo 7418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-oprab 7420 df-mpo 7421 |
This theorem is referenced by: ovmpos 7566 ov2gf 7567 ovmpodxf 7568 ovmpodf 7574 ovmpodv2 7576 xpcomco 9092 mapxpen 9173 pwfseqlem2 10693 pwfseqlem4a 10695 pwfseqlem4 10696 gsum2d2lem 19967 gsum2d2 19968 gsumcom2 19969 dprd2d2 20040 cnmpt21 23663 cnmpt2t 23665 cnmptcom 23670 cnmpt2k 23680 xkocnv 23806 finxpreclem2 37110 finxpreclem6 37116 mnringmulrcld 43939 fmuldfeq 45240 smflimlem6 46433 ovmpordxf 47753 |
Copyright terms: Public domain | W3C validator |