MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpo2 Structured version   Visualization version   GIF version

Theorem nfmpo2 7434
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo2 𝑦(𝑥𝐴, 𝑦𝐵𝐶)

Proof of Theorem nfmpo2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 7358 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 nfoprab2 7415 . 2 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2nfcxfr 2889 1 𝑦(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wnfc 2876  {coprab 7354  cmpo 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-oprab 7357  df-mpo 7358
This theorem is referenced by:  ovmpos  7501  ov2gf  7502  ovmpodxf  7503  ovmpodf  7509  ovmpodv2  7511  xpcomco  8991  mapxpen  9067  pwfseqlem2  10572  pwfseqlem4a  10574  pwfseqlem4  10575  gsum2d2lem  19870  gsum2d2  19871  gsumcom2  19872  dprd2d2  19943  cnmpt21  23574  cnmpt2t  23576  cnmptcom  23581  cnmpt2k  23591  xkocnv  23717  finxpreclem2  37363  finxpreclem6  37369  mnringmulrcld  44201  fmuldfeq  45565  smflimlem6  46758  ovmpordxf  48324
  Copyright terms: Public domain W3C validator