| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpo2 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
| Ref | Expression |
|---|---|
| nfmpo2 | ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 7410 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 2 | nfoprab2 7469 | . 2 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 3 | 1, 2 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 {coprab 7406 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-oprab 7409 df-mpo 7410 |
| This theorem is referenced by: ovmpos 7555 ov2gf 7556 ovmpodxf 7557 ovmpodf 7563 ovmpodv2 7565 xpcomco 9076 mapxpen 9157 pwfseqlem2 10673 pwfseqlem4a 10675 pwfseqlem4 10676 gsum2d2lem 19954 gsum2d2 19955 gsumcom2 19956 dprd2d2 20027 cnmpt21 23609 cnmpt2t 23611 cnmptcom 23616 cnmpt2k 23626 xkocnv 23752 finxpreclem2 37408 finxpreclem6 37414 mnringmulrcld 44252 fmuldfeq 45612 smflimlem6 46805 ovmpordxf 48314 |
| Copyright terms: Public domain | W3C validator |