| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpo2 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
| Ref | Expression |
|---|---|
| nfmpo2 | ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 7436 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 2 | nfoprab2 7495 | . 2 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 3 | 1, 2 | nfcxfr 2903 | 1 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2890 {coprab 7432 ∈ cmpo 7433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-oprab 7435 df-mpo 7436 |
| This theorem is referenced by: ovmpos 7581 ov2gf 7582 ovmpodxf 7583 ovmpodf 7589 ovmpodv2 7591 xpcomco 9102 mapxpen 9183 pwfseqlem2 10699 pwfseqlem4a 10701 pwfseqlem4 10702 gsum2d2lem 19991 gsum2d2 19992 gsumcom2 19993 dprd2d2 20064 cnmpt21 23679 cnmpt2t 23681 cnmptcom 23686 cnmpt2k 23696 xkocnv 23822 finxpreclem2 37391 finxpreclem6 37397 mnringmulrcld 44247 fmuldfeq 45598 smflimlem6 46791 ovmpordxf 48255 |
| Copyright terms: Public domain | W3C validator |