| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpo2 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
| Ref | Expression |
|---|---|
| nfmpo2 | ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 7351 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 2 | nfoprab2 7408 | . 2 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 3 | 1, 2 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 {coprab 7347 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: ovmpos 7494 ov2gf 7495 ovmpodxf 7496 ovmpodf 7502 ovmpodv2 7504 xpcomco 8980 mapxpen 9056 pwfseqlem2 10547 pwfseqlem4a 10549 pwfseqlem4 10550 gsum2d2lem 19883 gsum2d2 19884 gsumcom2 19885 dprd2d2 19956 cnmpt21 23584 cnmpt2t 23586 cnmptcom 23591 cnmpt2k 23601 xkocnv 23727 finxpreclem2 37423 finxpreclem6 37429 mnringmulrcld 44260 fmuldfeq 45622 smflimlem6 46813 ovmpordxf 48369 |
| Copyright terms: Public domain | W3C validator |