Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmpo2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
Ref | Expression |
---|---|
nfmpo2 | ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpo 7260 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
2 | nfoprab2 7315 | . 2 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
3 | 1, 2 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 {coprab 7256 ∈ cmpo 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: ovmpos 7399 ov2gf 7400 ovmpodxf 7401 ovmpodf 7407 ovmpodv2 7409 xpcomco 8802 mapxpen 8879 pwfseqlem2 10346 pwfseqlem4a 10348 pwfseqlem4 10349 gsum2d2lem 19489 gsum2d2 19490 gsumcom2 19491 dprd2d2 19562 cnmpt21 22730 cnmpt2t 22732 cnmptcom 22737 cnmpt2k 22747 xkocnv 22873 finxpreclem2 35488 finxpreclem6 35494 mnringmulrcld 41735 fmuldfeq 43014 smflimlem6 44198 ovmpordxf 45562 |
Copyright terms: Public domain | W3C validator |