| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpo2 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.) |
| Ref | Expression |
|---|---|
| nfmpo2 | ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo 7357 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 2 | nfoprab2 7414 | . 2 ⊢ Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 3 | 1, 2 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 Ⅎwnfc 2880 {coprab 7353 ∈ cmpo 7354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-oprab 7356 df-mpo 7357 |
| This theorem is referenced by: ovmpos 7500 ov2gf 7501 ovmpodxf 7502 ovmpodf 7508 ovmpodv2 7510 xpcomco 8987 mapxpen 9063 pwfseqlem2 10557 pwfseqlem4a 10559 pwfseqlem4 10560 gsum2d2lem 19887 gsum2d2 19888 gsumcom2 19889 dprd2d2 19960 cnmpt21 23587 cnmpt2t 23589 cnmptcom 23594 cnmpt2k 23604 xkocnv 23730 finxpreclem2 37455 finxpreclem6 37461 mnringmulrcld 44345 fmuldfeq 45707 smflimlem6 46898 ovmpordxf 48463 |
| Copyright terms: Public domain | W3C validator |