MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpo2 Structured version   Visualization version   GIF version

Theorem nfmpo2 7427
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo2 𝑦(𝑥𝐴, 𝑦𝐵𝐶)

Proof of Theorem nfmpo2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 7351 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 nfoprab2 7408 . 2 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2nfcxfr 2892 1 𝑦(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  wnfc 2879  {coprab 7347  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  ovmpos  7494  ov2gf  7495  ovmpodxf  7496  ovmpodf  7502  ovmpodv2  7504  xpcomco  8980  mapxpen  9056  pwfseqlem2  10547  pwfseqlem4a  10549  pwfseqlem4  10550  gsum2d2lem  19883  gsum2d2  19884  gsumcom2  19885  dprd2d2  19956  cnmpt21  23584  cnmpt2t  23586  cnmptcom  23591  cnmpt2k  23601  xkocnv  23727  finxpreclem2  37423  finxpreclem6  37429  mnringmulrcld  44260  fmuldfeq  45622  smflimlem6  46813  ovmpordxf  48369
  Copyright terms: Public domain W3C validator