MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpo2 Structured version   Visualization version   GIF version

Theorem nfmpo2 7488
Description: Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
Assertion
Ref Expression
nfmpo2 𝑦(𝑥𝐴, 𝑦𝐵𝐶)

Proof of Theorem nfmpo2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpo 7410 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 nfoprab2 7469 . 2 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
31, 2nfcxfr 2896 1 𝑦(𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  wnfc 2883  {coprab 7406  cmpo 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-oprab 7409  df-mpo 7410
This theorem is referenced by:  ovmpos  7555  ov2gf  7556  ovmpodxf  7557  ovmpodf  7563  ovmpodv2  7565  xpcomco  9076  mapxpen  9157  pwfseqlem2  10673  pwfseqlem4a  10675  pwfseqlem4  10676  gsum2d2lem  19954  gsum2d2  19955  gsumcom2  19956  dprd2d2  20027  cnmpt21  23609  cnmpt2t  23611  cnmptcom  23616  cnmpt2k  23626  xkocnv  23752  finxpreclem2  37408  finxpreclem6  37414  mnringmulrcld  44252  fmuldfeq  45612  smflimlem6  46805  ovmpordxf  48314
  Copyright terms: Public domain W3C validator