MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfuni Structured version   Visualization version   GIF version

Theorem nfuni 4878
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
nfuni.1 𝑥𝐴
Assertion
Ref Expression
nfuni 𝑥 𝐴

Proof of Theorem nfuni
StepHypRef Expression
1 nfuni.1 . 2 𝑥𝐴
2 id 22 . . 3 (𝑥𝐴𝑥𝐴)
32nfunid 4877 . 2 (𝑥𝐴𝑥 𝐴)
41, 3ax-mp 5 1 𝑥 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876   cuni 4871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-uni 4872
This theorem is referenced by:  nfiota1  6466  nffrecs  8262  nfsup  9402  ptunimpt  23482  disjabrex  32511  disjabrexf  32512  fnpreimac  32595  nfesum1  34030  nfesum2  34031  bnj1398  35024  bnj1446  35035  bnj1447  35036  bnj1448  35037  bnj1466  35043  bnj1467  35044  bnj1519  35055  bnj1520  35056  bnj1525  35059  bnj1523  35061  dfon2lem3  35773  mptsnunlem  37326  ptrest  37613  heibor1  37804  nfunidALT2  38962  nfunidALT  38963  disjinfi  45186  stoweidlem28  46026  stoweidlem59  46057  fourierdlem80  46184  saliinclf  46324  smfresal  46786  smfpimbor1lem2  46797  nfafv2  47219  nfsetrecs  49675
  Copyright terms: Public domain W3C validator