MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfuni Structured version   Visualization version   GIF version

Theorem nfuni 4938
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
nfuni.1 𝑥𝐴
Assertion
Ref Expression
nfuni 𝑥 𝐴

Proof of Theorem nfuni
StepHypRef Expression
1 nfuni.1 . 2 𝑥𝐴
2 id 22 . . 3 (𝑥𝐴𝑥𝐴)
32nfunid 4937 . 2 (𝑥𝐴𝑥 𝐴)
41, 3ax-mp 5 1 𝑥 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnfc 2893   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-uni 4932
This theorem is referenced by:  nfiota1  6527  nffrecs  8324  nfwrecsOLD  8358  nfsup  9520  ptunimpt  23624  disjabrex  32604  disjabrexf  32605  fnpreimac  32689  nfesum1  34004  nfesum2  34005  bnj1398  35010  bnj1446  35021  bnj1447  35022  bnj1448  35023  bnj1466  35029  bnj1467  35030  bnj1519  35041  bnj1520  35042  bnj1525  35045  bnj1523  35047  dfon2lem3  35749  mptsnunlem  37304  ptrest  37579  heibor1  37770  nfunidALT2  38925  nfunidALT  38926  disjinfi  45099  stoweidlem28  45949  stoweidlem59  45980  fourierdlem80  46107  saliinclf  46247  smfresal  46709  smfpimbor1lem2  46720  nfafv2  47133  nfsetrecs  48778
  Copyright terms: Public domain W3C validator