| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfuni | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfuni.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
| 3 | 2 | nfunid 4867 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥∪ 𝐴) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ∪ cuni 4861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-uni 4862 |
| This theorem is referenced by: nfiota1 6444 nffrecs 8223 nfsup 9360 ptunimpt 23498 disjabrex 32544 disjabrexf 32545 fnpreimac 32628 nfesum1 34009 nfesum2 34010 bnj1398 35003 bnj1446 35014 bnj1447 35015 bnj1448 35016 bnj1466 35022 bnj1467 35023 bnj1519 35034 bnj1520 35035 bnj1525 35038 bnj1523 35040 dfon2lem3 35761 mptsnunlem 37314 ptrest 37601 heibor1 37792 nfunidALT2 38950 nfunidALT 38951 disjinfi 45173 stoweidlem28 46013 stoweidlem59 46044 fourierdlem80 46171 saliinclf 46311 smfresal 46773 smfpimbor1lem2 46784 nfafv2 47206 nfsetrecs 49675 |
| Copyright terms: Public domain | W3C validator |