| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfuni | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfuni.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
| 3 | 2 | nfunid 4860 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥∪ 𝐴) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 ∪ cuni 4854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-uni 4855 |
| This theorem is referenced by: nfiota1 6434 nffrecs 8208 nfsup 9330 ptunimpt 23505 disjabrex 32554 disjabrexf 32555 fnpreimac 32645 nfesum1 34045 nfesum2 34046 bnj1398 35038 bnj1446 35049 bnj1447 35050 bnj1448 35051 bnj1466 35057 bnj1467 35058 bnj1519 35069 bnj1520 35070 bnj1525 35073 bnj1523 35075 dfon2lem3 35819 mptsnunlem 37372 ptrest 37659 heibor1 37850 nfunidALT2 39008 nfunidALT 39009 disjinfi 45229 stoweidlem28 46066 stoweidlem59 46097 fourierdlem80 46224 saliinclf 46364 smfresal 46826 smfpimbor1lem2 46837 nfafv2 47249 nfsetrecs 49718 |
| Copyright terms: Public domain | W3C validator |