Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfuni | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfuni.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
3 | 2 | nfunid 4850 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥∪ 𝐴) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2888 ∪ cuni 4844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-uni 4845 |
This theorem is referenced by: nfiota1 6390 nffrecs 8083 nfwrecsOLD 8117 nfsup 9171 ptunimpt 22727 disjabrex 30900 disjabrexf 30901 fnpreimac 30987 nfesum1 31987 nfesum2 31988 bnj1398 32993 bnj1446 33004 bnj1447 33005 bnj1448 33006 bnj1466 33012 bnj1467 33013 bnj1519 33024 bnj1520 33025 bnj1525 33028 bnj1523 33030 dfon2lem3 33740 mptsnunlem 35488 ptrest 35755 heibor1 35947 nfunidALT2 36962 nfunidALT 36963 disjinfi 42684 stoweidlem28 43523 stoweidlem59 43554 fourierdlem80 43681 smfresal 44273 smfpimbor1lem2 44284 nfafv2 44661 nfsetrecs 46344 |
Copyright terms: Public domain | W3C validator |