| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfuni | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfuni.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
| 3 | 2 | nfunid 4873 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥∪ 𝐴) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-uni 4868 |
| This theorem is referenced by: nfiota1 6454 nffrecs 8239 nfsup 9378 ptunimpt 23458 disjabrex 32484 disjabrexf 32485 fnpreimac 32568 nfesum1 34003 nfesum2 34004 bnj1398 34997 bnj1446 35008 bnj1447 35009 bnj1448 35010 bnj1466 35016 bnj1467 35017 bnj1519 35028 bnj1520 35029 bnj1525 35032 bnj1523 35034 dfon2lem3 35746 mptsnunlem 37299 ptrest 37586 heibor1 37777 nfunidALT2 38935 nfunidALT 38936 disjinfi 45159 stoweidlem28 45999 stoweidlem59 46030 fourierdlem80 46157 saliinclf 46297 smfresal 46759 smfpimbor1lem2 46770 nfafv2 47192 nfsetrecs 49648 |
| Copyright terms: Public domain | W3C validator |