MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfuni Structured version   Visualization version   GIF version

Theorem nfuni 4602
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
nfuni.1 𝑥𝐴
Assertion
Ref Expression
nfuni 𝑥 𝐴

Proof of Theorem nfuni
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 4598 . 2 𝐴 = {𝑦 ∣ ∃𝑧𝐴 𝑦𝑧}
2 nfuni.1 . . . 4 𝑥𝐴
3 nfv 2009 . . . 4 𝑥 𝑦𝑧
42, 3nfrex 3153 . . 3 𝑥𝑧𝐴 𝑦𝑧
54nfab 2912 . 2 𝑥{𝑦 ∣ ∃𝑧𝐴 𝑦𝑧}
61, 5nfcxfr 2905 1 𝑥 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2751  wnfc 2894  wrex 3056   cuni 4596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-uni 4597
This theorem is referenced by:  nfiota1  6035  nfwrecs  7614  nfsup  8566  ptunimpt  21681  disjabrex  29846  disjabrexf  29847  nfesum1  30552  nfesum2  30553  bnj1398  31553  bnj1446  31564  bnj1447  31565  bnj1448  31566  bnj1466  31572  bnj1467  31573  bnj1519  31584  bnj1520  31585  bnj1525  31588  bnj1523  31590  dfon2lem3  32136  nffrecs  32225  mptsnunlem  33622  ptrest  33835  heibor1  34034  nfunidALT2  34928  nfunidALT  34929  disjinfi  40030  stoweidlem28  40885  stoweidlem59  40916  fourierdlem80  41043  smfresal  41638  smfpimbor1lem2  41649  nfafv2  41969  nfsetrecs  43105
  Copyright terms: Public domain W3C validator