Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfuni | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfuni.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
3 | 2 | nfunid 4850 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥∪ 𝐴) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2885 ∪ cuni 4844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-uni 4845 |
This theorem is referenced by: nfiota1 6412 nffrecs 8130 nfwrecsOLD 8164 nfsup 9258 ptunimpt 22795 disjabrex 30970 disjabrexf 30971 fnpreimac 31057 nfesum1 32057 nfesum2 32058 bnj1398 33063 bnj1446 33074 bnj1447 33075 bnj1448 33076 bnj1466 33082 bnj1467 33083 bnj1519 33094 bnj1520 33095 bnj1525 33098 bnj1523 33100 dfon2lem3 33810 mptsnunlem 35557 ptrest 35824 heibor1 36016 nfunidALT2 37183 nfunidALT 37184 disjinfi 42951 stoweidlem28 43798 stoweidlem59 43829 fourierdlem80 43956 smfresal 44556 smfpimbor1lem2 44567 nfafv2 44954 nfsetrecs 46636 |
Copyright terms: Public domain | W3C validator |