| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfuni | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfuni.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
| 3 | 2 | nfunid 4889 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥∪ 𝐴) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2883 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-uni 4884 |
| This theorem is referenced by: nfiota1 6486 nffrecs 8282 nfwrecsOLD 8316 nfsup 9463 ptunimpt 23533 disjabrex 32563 disjabrexf 32564 fnpreimac 32649 nfesum1 34071 nfesum2 34072 bnj1398 35065 bnj1446 35076 bnj1447 35077 bnj1448 35078 bnj1466 35084 bnj1467 35085 bnj1519 35096 bnj1520 35097 bnj1525 35100 bnj1523 35102 dfon2lem3 35803 mptsnunlem 37356 ptrest 37643 heibor1 37834 nfunidALT2 38987 nfunidALT 38988 disjinfi 45216 stoweidlem28 46057 stoweidlem59 46088 fourierdlem80 46215 saliinclf 46355 smfresal 46817 smfpimbor1lem2 46828 nfafv2 47247 nfsetrecs 49550 |
| Copyright terms: Public domain | W3C validator |