![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfuni | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfuni.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
3 | 2 | nfunid 4937 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥∪ 𝐴) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-uni 4932 |
This theorem is referenced by: nfiota1 6527 nffrecs 8324 nfwrecsOLD 8358 nfsup 9520 ptunimpt 23624 disjabrex 32604 disjabrexf 32605 fnpreimac 32689 nfesum1 34004 nfesum2 34005 bnj1398 35010 bnj1446 35021 bnj1447 35022 bnj1448 35023 bnj1466 35029 bnj1467 35030 bnj1519 35041 bnj1520 35042 bnj1525 35045 bnj1523 35047 dfon2lem3 35749 mptsnunlem 37304 ptrest 37579 heibor1 37770 nfunidALT2 38925 nfunidALT 38926 disjinfi 45099 stoweidlem28 45949 stoweidlem59 45980 fourierdlem80 46107 saliinclf 46247 smfresal 46709 smfpimbor1lem2 46720 nfafv2 47133 nfsetrecs 48778 |
Copyright terms: Public domain | W3C validator |