| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfuni | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfuni.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
| 3 | 2 | nfunid 4866 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥∪ 𝐴) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2880 ∪ cuni 4860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-uni 4861 |
| This theorem is referenced by: nfiota1 6447 nffrecs 8222 nfsup 9346 ptunimpt 23530 disjabrex 32583 disjabrexf 32584 fnpreimac 32675 nfesum1 34125 nfesum2 34126 bnj1398 35118 bnj1446 35129 bnj1447 35130 bnj1448 35131 bnj1466 35137 bnj1467 35138 bnj1519 35149 bnj1520 35150 bnj1525 35153 bnj1523 35155 dfon2lem3 35899 mptsnunlem 37455 ptrest 37732 heibor1 37923 nfunidALT2 39141 nfunidALT 39142 disjinfi 45352 stoweidlem28 46188 stoweidlem59 46219 fourierdlem80 46346 saliinclf 46486 smfresal 46948 smfpimbor1lem2 46959 nfafv2 47380 nfsetrecs 49847 |
| Copyright terms: Public domain | W3C validator |