![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfuni | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfuni.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
3 | 2 | nfunid 4917 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥∪ 𝐴) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2887 ∪ cuni 4911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-uni 4912 |
This theorem is referenced by: nfiota1 6517 nffrecs 8306 nfwrecsOLD 8340 nfsup 9488 ptunimpt 23618 disjabrex 32601 disjabrexf 32602 fnpreimac 32687 nfesum1 34020 nfesum2 34021 bnj1398 35026 bnj1446 35037 bnj1447 35038 bnj1448 35039 bnj1466 35045 bnj1467 35046 bnj1519 35057 bnj1520 35058 bnj1525 35061 bnj1523 35063 dfon2lem3 35766 mptsnunlem 37320 ptrest 37605 heibor1 37796 nfunidALT2 38950 nfunidALT 38951 disjinfi 45134 stoweidlem28 45983 stoweidlem59 46014 fourierdlem80 46141 saliinclf 46281 smfresal 46743 smfpimbor1lem2 46754 nfafv2 47167 nfsetrecs 48916 |
Copyright terms: Public domain | W3C validator |