| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfuni | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfuni.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
| 3 | 2 | nfunid 4880 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥∪ 𝐴) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2877 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-uni 4875 |
| This theorem is referenced by: nfiota1 6469 nffrecs 8265 nfsup 9409 ptunimpt 23489 disjabrex 32518 disjabrexf 32519 fnpreimac 32602 nfesum1 34037 nfesum2 34038 bnj1398 35031 bnj1446 35042 bnj1447 35043 bnj1448 35044 bnj1466 35050 bnj1467 35051 bnj1519 35062 bnj1520 35063 bnj1525 35066 bnj1523 35068 dfon2lem3 35780 mptsnunlem 37333 ptrest 37620 heibor1 37811 nfunidALT2 38969 nfunidALT 38970 disjinfi 45193 stoweidlem28 46033 stoweidlem59 46064 fourierdlem80 46191 saliinclf 46331 smfresal 46793 smfpimbor1lem2 46804 nfafv2 47223 nfsetrecs 49679 |
| Copyright terms: Public domain | W3C validator |