| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfuni | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfuni.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
| 3 | 2 | nfunid 4877 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥∪ 𝐴) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-uni 4872 |
| This theorem is referenced by: nfiota1 6466 nffrecs 8262 nfsup 9402 ptunimpt 23482 disjabrex 32511 disjabrexf 32512 fnpreimac 32595 nfesum1 34030 nfesum2 34031 bnj1398 35024 bnj1446 35035 bnj1447 35036 bnj1448 35037 bnj1466 35043 bnj1467 35044 bnj1519 35055 bnj1520 35056 bnj1525 35059 bnj1523 35061 dfon2lem3 35773 mptsnunlem 37326 ptrest 37613 heibor1 37804 nfunidALT2 38962 nfunidALT 38963 disjinfi 45186 stoweidlem28 46026 stoweidlem59 46057 fourierdlem80 46184 saliinclf 46324 smfresal 46786 smfpimbor1lem2 46797 nfafv2 47219 nfsetrecs 49675 |
| Copyright terms: Public domain | W3C validator |