Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > notzfausOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of notzfaus 5268 as of 18-Nov-2023. (Contributed by NM, 8-Feb-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
notzfaus.1 | ⊢ 𝐴 = {∅} |
notzfaus.2 | ⊢ (𝜑 ↔ ¬ 𝑥 ∈ 𝑦) |
Ref | Expression |
---|---|
notzfausOLD | ⊢ ¬ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notzfaus.1 | . . . . . 6 ⊢ 𝐴 = {∅} | |
2 | 0ex 5214 | . . . . . . 7 ⊢ ∅ ∈ V | |
3 | 2 | snnz 4706 | . . . . . 6 ⊢ {∅} ≠ ∅ |
4 | 1, 3 | eqnetri 3012 | . . . . 5 ⊢ 𝐴 ≠ ∅ |
5 | n0 4275 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
6 | 4, 5 | mpbi 233 | . . . 4 ⊢ ∃𝑥 𝑥 ∈ 𝐴 |
7 | biimt 364 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑦))) | |
8 | iman 405 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑦) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝑦)) | |
9 | notzfaus.2 | . . . . . . . 8 ⊢ (𝜑 ↔ ¬ 𝑥 ∈ 𝑦) | |
10 | 9 | anbi2i 626 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝑦)) |
11 | 8, 10 | xchbinxr 338 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑦) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
12 | 7, 11 | bitrdi 290 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝑦 ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
13 | xor3 387 | . . . . 5 ⊢ (¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑦 ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
14 | 12, 13 | sylibr 237 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
15 | 6, 14 | eximii 1844 | . . 3 ⊢ ∃𝑥 ¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
16 | exnal 1834 | . . 3 ⊢ (∃𝑥 ¬ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
17 | 15, 16 | mpbi 233 | . 2 ⊢ ¬ ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
18 | 17 | nex 1808 | 1 ⊢ ¬ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1541 = wceq 1543 ∃wex 1787 ∈ wcel 2111 ≠ wne 2941 ∅c0 4251 {csn 4555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-ext 2709 ax-nul 5213 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2942 df-v 3422 df-dif 3883 df-nul 4252 df-sn 4556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |