| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zorn2lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for zorn2 10528. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| zorn2lem.3 | ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
| zorn2lem.4 | ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
| zorn2lem.5 | ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} |
| Ref | Expression |
|---|---|
| zorn2lem3 | ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zorn2lem.3 | . . . 4 ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) | |
| 2 | zorn2lem.4 | . . . 4 ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} | |
| 3 | zorn2lem.5 | . . . 4 ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} | |
| 4 | 1, 2, 3 | zorn2lem2 10519 | . . 3 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
| 6 | 3 | ssrab3 4062 | . . . 4 ⊢ 𝐷 ⊆ 𝐴 |
| 7 | 1, 2, 3 | zorn2lem1 10518 | . . . 4 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐷) |
| 8 | 6, 7 | sselid 3961 | . . 3 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐴) |
| 9 | breq1 5126 | . . . . . 6 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → ((𝐹‘𝑥)𝑅(𝐹‘𝑥) ↔ (𝐹‘𝑦)𝑅(𝐹‘𝑥))) | |
| 10 | 9 | biimprcd 250 | . . . . 5 ⊢ ((𝐹‘𝑦)𝑅(𝐹‘𝑥) → ((𝐹‘𝑥) = (𝐹‘𝑦) → (𝐹‘𝑥)𝑅(𝐹‘𝑥))) |
| 11 | poirr 5584 | . . . . 5 ⊢ ((𝑅 Po 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐴) → ¬ (𝐹‘𝑥)𝑅(𝐹‘𝑥)) | |
| 12 | 10, 11 | nsyli 157 | . . . 4 ⊢ ((𝐹‘𝑦)𝑅(𝐹‘𝑥) → ((𝑅 Po 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐴) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
| 13 | 12 | com12 32 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐴) → ((𝐹‘𝑦)𝑅(𝐹‘𝑥) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
| 14 | 8, 13 | sylan2 593 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → ((𝐹‘𝑦)𝑅(𝐹‘𝑥) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
| 15 | 5, 14 | syld 47 | 1 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 {crab 3419 Vcvv 3463 ∅c0 4313 class class class wbr 5123 ↦ cmpt 5205 Po wpo 5570 We wwe 5616 ran crn 5666 “ cima 5668 Oncon0 6363 ‘cfv 6541 ℩crio 7369 recscrecs 8392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 |
| This theorem is referenced by: zorn2lem4 10521 |
| Copyright terms: Public domain | W3C validator |