Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zorn2lem3 | Structured version Visualization version GIF version |
Description: Lemma for zorn2 10262. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
zorn2lem.3 | ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
zorn2lem.4 | ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
zorn2lem.5 | ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} |
Ref | Expression |
---|---|
zorn2lem3 | ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zorn2lem.3 | . . . 4 ⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) | |
2 | zorn2lem.4 | . . . 4 ⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} | |
3 | zorn2lem.5 | . . . 4 ⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} | |
4 | 1, 2, 3 | zorn2lem2 10253 | . . 3 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
5 | 4 | adantl 482 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → (𝑦 ∈ 𝑥 → (𝐹‘𝑦)𝑅(𝐹‘𝑥))) |
6 | 3 | ssrab3 4015 | . . . 4 ⊢ 𝐷 ⊆ 𝐴 |
7 | 1, 2, 3 | zorn2lem1 10252 | . . . 4 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐷) |
8 | 6, 7 | sselid 3919 | . . 3 ⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐴) |
9 | breq1 5077 | . . . . . 6 ⊢ ((𝐹‘𝑥) = (𝐹‘𝑦) → ((𝐹‘𝑥)𝑅(𝐹‘𝑥) ↔ (𝐹‘𝑦)𝑅(𝐹‘𝑥))) | |
10 | 9 | biimprcd 249 | . . . . 5 ⊢ ((𝐹‘𝑦)𝑅(𝐹‘𝑥) → ((𝐹‘𝑥) = (𝐹‘𝑦) → (𝐹‘𝑥)𝑅(𝐹‘𝑥))) |
11 | poirr 5515 | . . . . 5 ⊢ ((𝑅 Po 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐴) → ¬ (𝐹‘𝑥)𝑅(𝐹‘𝑥)) | |
12 | 10, 11 | nsyli 157 | . . . 4 ⊢ ((𝐹‘𝑦)𝑅(𝐹‘𝑥) → ((𝑅 Po 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐴) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
13 | 12 | com12 32 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝐹‘𝑥) ∈ 𝐴) → ((𝐹‘𝑦)𝑅(𝐹‘𝑥) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
14 | 8, 13 | sylan2 593 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → ((𝐹‘𝑦)𝑅(𝐹‘𝑥) → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
15 | 5, 14 | syld 47 | 1 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅))) → (𝑦 ∈ 𝑥 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 Vcvv 3432 ∅c0 4256 class class class wbr 5074 ↦ cmpt 5157 Po wpo 5501 We wwe 5543 ran crn 5590 “ cima 5592 Oncon0 6266 ‘cfv 6433 ℩crio 7231 recscrecs 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 |
This theorem is referenced by: zorn2lem4 10255 |
Copyright terms: Public domain | W3C validator |