MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem3 Structured version   Visualization version   GIF version

Theorem zorn2lem3 10520
Description: Lemma for zorn2 10528. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem3 ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅))) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem3
StepHypRef Expression
1 zorn2lem.3 . . . 4 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
2 zorn2lem.4 . . . 4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
3 zorn2lem.5 . . . 4 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
41, 2, 3zorn2lem2 10519 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑦𝑥 → (𝐹𝑦)𝑅(𝐹𝑥)))
54adantl 481 . 2 ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅))) → (𝑦𝑥 → (𝐹𝑦)𝑅(𝐹𝑥)))
63ssrab3 4062 . . . 4 𝐷𝐴
71, 2, 3zorn2lem1 10518 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
86, 7sselid 3961 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐴)
9 breq1 5126 . . . . . 6 ((𝐹𝑥) = (𝐹𝑦) → ((𝐹𝑥)𝑅(𝐹𝑥) ↔ (𝐹𝑦)𝑅(𝐹𝑥)))
109biimprcd 250 . . . . 5 ((𝐹𝑦)𝑅(𝐹𝑥) → ((𝐹𝑥) = (𝐹𝑦) → (𝐹𝑥)𝑅(𝐹𝑥)))
11 poirr 5584 . . . . 5 ((𝑅 Po 𝐴 ∧ (𝐹𝑥) ∈ 𝐴) → ¬ (𝐹𝑥)𝑅(𝐹𝑥))
1210, 11nsyli 157 . . . 4 ((𝐹𝑦)𝑅(𝐹𝑥) → ((𝑅 Po 𝐴 ∧ (𝐹𝑥) ∈ 𝐴) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1312com12 32 . . 3 ((𝑅 Po 𝐴 ∧ (𝐹𝑥) ∈ 𝐴) → ((𝐹𝑦)𝑅(𝐹𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
148, 13sylan2 593 . 2 ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅))) → ((𝐹𝑦)𝑅(𝐹𝑥) → ¬ (𝐹𝑥) = (𝐹𝑦)))
155, 14syld 47 1 ((𝑅 Po 𝐴 ∧ (𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅))) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  {crab 3419  Vcvv 3463  c0 4313   class class class wbr 5123  cmpt 5205   Po wpo 5570   We wwe 5616  ran crn 5666  cima 5668  Oncon0 6363  cfv 6541  crio 7369  recscrecs 8392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393
This theorem is referenced by:  zorn2lem4  10521
  Copyright terms: Public domain W3C validator