MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49 Structured version   Visualization version   GIF version

Theorem tz7.49 8267
Description: Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 10-Jan-2013.)
Hypotheses
Ref Expression
tz7.49.1 𝐹 Fn On
tz7.49.2 (𝜑 ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
Assertion
Ref Expression
tz7.49 ((𝐴𝐵𝜑) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem tz7.49
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2946 . . . . . . . . 9 ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ ↔ ¬ (𝐴 ∖ (𝐹𝑥)) = ∅)
21ralbii 3093 . . . . . . . 8 (∀𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) ≠ ∅ ↔ ∀𝑥 ∈ On ¬ (𝐴 ∖ (𝐹𝑥)) = ∅)
3 tz7.49.2 . . . . . . . . 9 (𝜑 ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
4 ralim 3085 . . . . . . . . 9 (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → (∀𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) ≠ ∅ → ∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
53, 4sylbi 216 . . . . . . . 8 (𝜑 → (∀𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) ≠ ∅ → ∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
62, 5syl5bir 242 . . . . . . 7 (𝜑 → (∀𝑥 ∈ On ¬ (𝐴 ∖ (𝐹𝑥)) = ∅ → ∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
7 tz7.49.1 . . . . . . . . 9 𝐹 Fn On
87tz7.48-3 8266 . . . . . . . 8 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
9 elex 3449 . . . . . . . 8 (𝐴𝐵𝐴 ∈ V)
108, 9nsyl3 138 . . . . . . 7 (𝐴𝐵 → ¬ ∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))
116, 10nsyli 157 . . . . . 6 (𝜑 → (𝐴𝐵 → ¬ ∀𝑥 ∈ On ¬ (𝐴 ∖ (𝐹𝑥)) = ∅))
12 dfrex2 3169 . . . . . 6 (∃𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) = ∅ ↔ ¬ ∀𝑥 ∈ On ¬ (𝐴 ∖ (𝐹𝑥)) = ∅)
1311, 12syl6ibr 251 . . . . 5 (𝜑 → (𝐴𝐵 → ∃𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) = ∅))
14 imaeq2 5964 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1514difeq2d 4062 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 ∖ (𝐹𝑥)) = (𝐴 ∖ (𝐹𝑦)))
1615eqeq1d 2742 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ∖ (𝐹𝑥)) = ∅ ↔ (𝐴 ∖ (𝐹𝑦)) = ∅))
1716onminex 7646 . . . . 5 (∃𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) = ∅ → ∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅))
1813, 17syl6 35 . . . 4 (𝜑 → (𝐴𝐵 → ∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅)))
19 df-ne 2946 . . . . . . 7 ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ ↔ ¬ (𝐴 ∖ (𝐹𝑦)) = ∅)
2019ralbii 3093 . . . . . 6 (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ↔ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅)
2120anbi2i 623 . . . . 5 (((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ↔ ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅))
2221rexbii 3180 . . . 4 (∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ↔ ∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅))
2318, 22syl6ibr 251 . . 3 (𝜑 → (𝐴𝐵 → ∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅)))
24 nfra1 3145 . . . . 5 𝑥𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))
253, 24nfxfr 1859 . . . 4 𝑥𝜑
26 simpllr 773 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅)
27 fnfun 6531 . . . . . . . . . . . . . . . . 17 (𝐹 Fn On → Fun 𝐹)
287, 27ax-mp 5 . . . . . . . . . . . . . . . 16 Fun 𝐹
29 fvelima 6832 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑧 ∈ (𝐹𝑥)) → ∃𝑦𝑥 (𝐹𝑦) = 𝑧)
3028, 29mpan 687 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐹𝑥) → ∃𝑦𝑥 (𝐹𝑦) = 𝑧)
31 nfv 1921 . . . . . . . . . . . . . . . . 17 𝑦𝜑
32 nfra1 3145 . . . . . . . . . . . . . . . . 17 𝑦𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅
3331, 32nfan 1906 . . . . . . . . . . . . . . . 16 𝑦(𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅)
34 nfv 1921 . . . . . . . . . . . . . . . 16 𝑦(𝑥 ∈ On → 𝑧𝐴)
35 rsp 3132 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝑦𝑥 → (𝐴 ∖ (𝐹𝑦)) ≠ ∅))
3635adantld 491 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝐴 ∖ (𝐹𝑦)) ≠ ∅))
37 onelon 6290 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
3815neeq1d 3005 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑦 → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ ↔ (𝐴 ∖ (𝐹𝑦)) ≠ ∅))
39 fveq2 6771 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4039, 15eleq12d 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) ↔ (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦))))
4138, 40imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑦 → (((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) ↔ ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4241rspcv 3556 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ On → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
433, 42syl5bi 241 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → (𝜑 → ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4443com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ On → ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝜑 → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4537, 44syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝜑 → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4636, 45sylcom 30 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝜑 → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4746com3r 87 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4847imp 407 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦))))
4948expcomd 417 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑦𝑥 → (𝑥 ∈ On → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
50 eldifi 4066 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)) → (𝐹𝑦) ∈ 𝐴)
51 eleq1 2828 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) = 𝑧 → ((𝐹𝑦) ∈ 𝐴𝑧𝐴))
5250, 51syl5ibcom 244 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)) → ((𝐹𝑦) = 𝑧𝑧𝐴))
5349, 52syl8 76 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑦𝑥 → (𝑥 ∈ On → ((𝐹𝑦) = 𝑧𝑧𝐴))))
5453com34 91 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑧 → (𝑥 ∈ On → 𝑧𝐴))))
5533, 34, 54rexlimd 3248 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (∃𝑦𝑥 (𝐹𝑦) = 𝑧 → (𝑥 ∈ On → 𝑧𝐴)))
5630, 55syl5 34 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑧 ∈ (𝐹𝑥) → (𝑥 ∈ On → 𝑧𝐴)))
5756com23 86 . . . . . . . . . . . . 13 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑥 ∈ On → (𝑧 ∈ (𝐹𝑥) → 𝑧𝐴)))
5857imp 407 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) → (𝑧 ∈ (𝐹𝑥) → 𝑧𝐴))
5958ssrdv 3932 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) → (𝐹𝑥) ⊆ 𝐴)
60 ssdif0 4303 . . . . . . . . . . . 12 (𝐴 ⊆ (𝐹𝑥) ↔ (𝐴 ∖ (𝐹𝑥)) = ∅)
6160biimpri 227 . . . . . . . . . . 11 ((𝐴 ∖ (𝐹𝑥)) = ∅ → 𝐴 ⊆ (𝐹𝑥))
6259, 61anim12i 613 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → ((𝐹𝑥) ⊆ 𝐴𝐴 ⊆ (𝐹𝑥)))
63 eqss 3941 . . . . . . . . . 10 ((𝐹𝑥) = 𝐴 ↔ ((𝐹𝑥) ⊆ 𝐴𝐴 ⊆ (𝐹𝑥)))
6462, 63sylibr 233 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → (𝐹𝑥) = 𝐴)
65 onss 7628 . . . . . . . . . . . . 13 (𝑥 ∈ On → 𝑥 ⊆ On)
6632, 31nfan 1906 . . . . . . . . . . . . . . . . 17 𝑦(∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑)
67 nfv 1921 . . . . . . . . . . . . . . . . 17 𝑦 𝑥 ⊆ On
6866, 67nfan 1906 . . . . . . . . . . . . . . . 16 𝑦((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On)
69 nfv 1921 . . . . . . . . . . . . . . . . . 18 𝑧(((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) ∧ 𝑦𝑥)
70 ssel 3919 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ⊆ On → (𝑦𝑥𝑦 ∈ On))
71 onss 7628 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → 𝑦 ⊆ On)
727fndmi 6535 . . . . . . . . . . . . . . . . . . . . . . . 24 dom 𝐹 = On
7371, 72sseqtrrdi 3977 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ On → 𝑦 ⊆ dom 𝐹)
74 funfvima2 7104 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝐹𝑦 ⊆ dom 𝐹) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)))
7528, 73, 74sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ On → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)))
7670, 75syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ⊆ On → (𝑦𝑥 → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
7735com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝑥 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐴 ∖ (𝐹𝑦)) ≠ ∅))
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ⊆ On → (𝑦𝑥 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐴 ∖ (𝐹𝑦)) ≠ ∅)))
7970, 78, 44syl10 79 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ⊆ On → (𝑦𝑥 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝜑 → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦))))))
8079imp4a 423 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ⊆ On → (𝑦𝑥 → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
81 eldifn 4067 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)) → ¬ (𝐹𝑦) ∈ (𝐹𝑦))
82 eleq1a 2836 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑧) ∈ (𝐹𝑦) → ((𝐹𝑦) = (𝐹𝑧) → (𝐹𝑦) ∈ (𝐹𝑦)))
8382con3d 152 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑧) ∈ (𝐹𝑦) → (¬ (𝐹𝑦) ∈ (𝐹𝑦) → ¬ (𝐹𝑦) = (𝐹𝑧)))
8481, 83syl5com 31 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)) → ((𝐹𝑧) ∈ (𝐹𝑦) → ¬ (𝐹𝑦) = (𝐹𝑧)))
8580, 84syl8 76 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ⊆ On → (𝑦𝑥 → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → ((𝐹𝑧) ∈ (𝐹𝑦) → ¬ (𝐹𝑦) = (𝐹𝑧)))))
8685com34 91 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ⊆ On → (𝑦𝑥 → ((𝐹𝑧) ∈ (𝐹𝑦) → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → ¬ (𝐹𝑦) = (𝐹𝑧)))))
8776, 86syldd 72 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ⊆ On → (𝑦𝑥 → (𝑧𝑦 → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → ¬ (𝐹𝑦) = (𝐹𝑧)))))
8887com4r 94 . . . . . . . . . . . . . . . . . . 19 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝑥 ⊆ On → (𝑦𝑥 → (𝑧𝑦 → ¬ (𝐹𝑦) = (𝐹𝑧)))))
8988imp31 418 . . . . . . . . . . . . . . . . . 18 ((((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) ∧ 𝑦𝑥) → (𝑧𝑦 → ¬ (𝐹𝑦) = (𝐹𝑧)))
9069, 89ralrimi 3142 . . . . . . . . . . . . . . . . 17 ((((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) ∧ 𝑦𝑥) → ∀𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧))
9190ex 413 . . . . . . . . . . . . . . . 16 (((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) → (𝑦𝑥 → ∀𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧)))
9268, 91ralrimi 3142 . . . . . . . . . . . . . . 15 (((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) → ∀𝑦𝑥𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧))
9392ex 413 . . . . . . . . . . . . . 14 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝑥 ⊆ On → ∀𝑦𝑥𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧)))
9493ancld 551 . . . . . . . . . . . . 13 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝑥 ⊆ On → (𝑥 ⊆ On ∧ ∀𝑦𝑥𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧))))
957tz7.48lem 8263 . . . . . . . . . . . . 13 ((𝑥 ⊆ On ∧ ∀𝑦𝑥𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧)) → Fun (𝐹𝑥))
9665, 94, 95syl56 36 . . . . . . . . . . . 12 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝑥 ∈ On → Fun (𝐹𝑥)))
9796ancoms 459 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑥 ∈ On → Fun (𝐹𝑥)))
9897imp 407 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) → Fun (𝐹𝑥))
9998adantr 481 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → Fun (𝐹𝑥))
10026, 64, 993jca 1127 . . . . . . . 8 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
101100exp41 435 . . . . . . 7 (𝜑 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝑥 ∈ On → ((𝐴 ∖ (𝐹𝑥)) = ∅ → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))))
102101com23 86 . . . . . 6 (𝜑 → (𝑥 ∈ On → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → ((𝐴 ∖ (𝐹𝑥)) = ∅ → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))))
103102com34 91 . . . . 5 (𝜑 → (𝑥 ∈ On → ((𝐴 ∖ (𝐹𝑥)) = ∅ → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))))
104103imp4a 423 . . . 4 (𝜑 → (𝑥 ∈ On → (((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))))
10525, 104reximdai 3242 . . 3 (𝜑 → (∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))
10623, 105syld 47 . 2 (𝜑 → (𝐴𝐵 → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))
107106impcom 408 1 ((𝐴𝐵𝜑) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  Vcvv 3431  cdif 3889  wss 3892  c0 4262  ccnv 5589  dom cdm 5590  cres 5592  cima 5593  Oncon0 6265  Fun wfun 6426   Fn wfn 6427  cfv 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6268  df-on 6269  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440
This theorem is referenced by:  tz7.49c  8268
  Copyright terms: Public domain W3C validator