MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49 Structured version   Visualization version   GIF version

Theorem tz7.49 8246
Description: Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 10-Jan-2013.)
Hypotheses
Ref Expression
tz7.49.1 𝐹 Fn On
tz7.49.2 (𝜑 ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
Assertion
Ref Expression
tz7.49 ((𝐴𝐵𝜑) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem tz7.49
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2943 . . . . . . . . 9 ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ ↔ ¬ (𝐴 ∖ (𝐹𝑥)) = ∅)
21ralbii 3090 . . . . . . . 8 (∀𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) ≠ ∅ ↔ ∀𝑥 ∈ On ¬ (𝐴 ∖ (𝐹𝑥)) = ∅)
3 tz7.49.2 . . . . . . . . 9 (𝜑 ↔ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
4 ralim 3082 . . . . . . . . 9 (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → (∀𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) ≠ ∅ → ∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
53, 4sylbi 216 . . . . . . . 8 (𝜑 → (∀𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) ≠ ∅ → ∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
62, 5syl5bir 242 . . . . . . 7 (𝜑 → (∀𝑥 ∈ On ¬ (𝐴 ∖ (𝐹𝑥)) = ∅ → ∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
7 tz7.49.1 . . . . . . . . 9 𝐹 Fn On
87tz7.48-3 8245 . . . . . . . 8 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ 𝐴 ∈ V)
9 elex 3440 . . . . . . . 8 (𝐴𝐵𝐴 ∈ V)
108, 9nsyl3 138 . . . . . . 7 (𝐴𝐵 → ¬ ∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))
116, 10nsyli 157 . . . . . 6 (𝜑 → (𝐴𝐵 → ¬ ∀𝑥 ∈ On ¬ (𝐴 ∖ (𝐹𝑥)) = ∅))
12 dfrex2 3166 . . . . . 6 (∃𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) = ∅ ↔ ¬ ∀𝑥 ∈ On ¬ (𝐴 ∖ (𝐹𝑥)) = ∅)
1311, 12syl6ibr 251 . . . . 5 (𝜑 → (𝐴𝐵 → ∃𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) = ∅))
14 imaeq2 5954 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1514difeq2d 4053 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 ∖ (𝐹𝑥)) = (𝐴 ∖ (𝐹𝑦)))
1615eqeq1d 2740 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ∖ (𝐹𝑥)) = ∅ ↔ (𝐴 ∖ (𝐹𝑦)) = ∅))
1716onminex 7629 . . . . 5 (∃𝑥 ∈ On (𝐴 ∖ (𝐹𝑥)) = ∅ → ∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅))
1813, 17syl6 35 . . . 4 (𝜑 → (𝐴𝐵 → ∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅)))
19 df-ne 2943 . . . . . . 7 ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ ↔ ¬ (𝐴 ∖ (𝐹𝑦)) = ∅)
2019ralbii 3090 . . . . . 6 (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ↔ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅)
2120anbi2i 622 . . . . 5 (((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ↔ ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅))
2221rexbii 3177 . . . 4 (∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ↔ ∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 ¬ (𝐴 ∖ (𝐹𝑦)) = ∅))
2318, 22syl6ibr 251 . . 3 (𝜑 → (𝐴𝐵 → ∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅)))
24 nfra1 3142 . . . . 5 𝑥𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))
253, 24nfxfr 1856 . . . 4 𝑥𝜑
26 simpllr 772 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅)
27 fnfun 6517 . . . . . . . . . . . . . . . . 17 (𝐹 Fn On → Fun 𝐹)
287, 27ax-mp 5 . . . . . . . . . . . . . . . 16 Fun 𝐹
29 fvelima 6817 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑧 ∈ (𝐹𝑥)) → ∃𝑦𝑥 (𝐹𝑦) = 𝑧)
3028, 29mpan 686 . . . . . . . . . . . . . . 15 (𝑧 ∈ (𝐹𝑥) → ∃𝑦𝑥 (𝐹𝑦) = 𝑧)
31 nfv 1918 . . . . . . . . . . . . . . . . 17 𝑦𝜑
32 nfra1 3142 . . . . . . . . . . . . . . . . 17 𝑦𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅
3331, 32nfan 1903 . . . . . . . . . . . . . . . 16 𝑦(𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅)
34 nfv 1918 . . . . . . . . . . . . . . . 16 𝑦(𝑥 ∈ On → 𝑧𝐴)
35 rsp 3129 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝑦𝑥 → (𝐴 ∖ (𝐹𝑦)) ≠ ∅))
3635adantld 490 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝐴 ∖ (𝐹𝑦)) ≠ ∅))
37 onelon 6276 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
3815neeq1d 3002 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑦 → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ ↔ (𝐴 ∖ (𝐹𝑦)) ≠ ∅))
39 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4039, 15eleq12d 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) ↔ (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦))))
4138, 40imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑦 → (((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) ↔ ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4241rspcv 3547 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ On → (∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
433, 42syl5bi 241 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → (𝜑 → ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4443com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ On → ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝜑 → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4537, 44syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝜑 → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4636, 45sylcom 30 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝜑 → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4746com3r 87 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
4847imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦))))
4948expcomd 416 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑦𝑥 → (𝑥 ∈ On → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
50 eldifi 4057 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)) → (𝐹𝑦) ∈ 𝐴)
51 eleq1 2826 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑦) = 𝑧 → ((𝐹𝑦) ∈ 𝐴𝑧𝐴))
5250, 51syl5ibcom 244 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)) → ((𝐹𝑦) = 𝑧𝑧𝐴))
5349, 52syl8 76 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑦𝑥 → (𝑥 ∈ On → ((𝐹𝑦) = 𝑧𝑧𝐴))))
5453com34 91 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑦𝑥 → ((𝐹𝑦) = 𝑧 → (𝑥 ∈ On → 𝑧𝐴))))
5533, 34, 54rexlimd 3245 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (∃𝑦𝑥 (𝐹𝑦) = 𝑧 → (𝑥 ∈ On → 𝑧𝐴)))
5630, 55syl5 34 . . . . . . . . . . . . . 14 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑧 ∈ (𝐹𝑥) → (𝑥 ∈ On → 𝑧𝐴)))
5756com23 86 . . . . . . . . . . . . 13 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑥 ∈ On → (𝑧 ∈ (𝐹𝑥) → 𝑧𝐴)))
5857imp 406 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) → (𝑧 ∈ (𝐹𝑥) → 𝑧𝐴))
5958ssrdv 3923 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) → (𝐹𝑥) ⊆ 𝐴)
60 ssdif0 4294 . . . . . . . . . . . 12 (𝐴 ⊆ (𝐹𝑥) ↔ (𝐴 ∖ (𝐹𝑥)) = ∅)
6160biimpri 227 . . . . . . . . . . 11 ((𝐴 ∖ (𝐹𝑥)) = ∅ → 𝐴 ⊆ (𝐹𝑥))
6259, 61anim12i 612 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → ((𝐹𝑥) ⊆ 𝐴𝐴 ⊆ (𝐹𝑥)))
63 eqss 3932 . . . . . . . . . 10 ((𝐹𝑥) = 𝐴 ↔ ((𝐹𝑥) ⊆ 𝐴𝐴 ⊆ (𝐹𝑥)))
6462, 63sylibr 233 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → (𝐹𝑥) = 𝐴)
65 onss 7611 . . . . . . . . . . . . 13 (𝑥 ∈ On → 𝑥 ⊆ On)
6632, 31nfan 1903 . . . . . . . . . . . . . . . . 17 𝑦(∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑)
67 nfv 1918 . . . . . . . . . . . . . . . . 17 𝑦 𝑥 ⊆ On
6866, 67nfan 1903 . . . . . . . . . . . . . . . 16 𝑦((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On)
69 nfv 1918 . . . . . . . . . . . . . . . . . 18 𝑧(((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) ∧ 𝑦𝑥)
70 ssel 3910 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ⊆ On → (𝑦𝑥𝑦 ∈ On))
71 onss 7611 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → 𝑦 ⊆ On)
727fndmi 6521 . . . . . . . . . . . . . . . . . . . . . . . 24 dom 𝐹 = On
7371, 72sseqtrrdi 3968 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ On → 𝑦 ⊆ dom 𝐹)
74 funfvima2 7089 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝐹𝑦 ⊆ dom 𝐹) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)))
7528, 73, 74sylancr 586 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ On → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)))
7670, 75syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ⊆ On → (𝑦𝑥 → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
7735com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦𝑥 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐴 ∖ (𝐹𝑦)) ≠ ∅))
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ⊆ On → (𝑦𝑥 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝐴 ∖ (𝐹𝑦)) ≠ ∅)))
7970, 78, 44syl10 79 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ⊆ On → (𝑦𝑥 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝜑 → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦))))))
8079imp4a 422 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ⊆ On → (𝑦𝑥 → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)))))
81 eldifn 4058 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)) → ¬ (𝐹𝑦) ∈ (𝐹𝑦))
82 eleq1a 2834 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑧) ∈ (𝐹𝑦) → ((𝐹𝑦) = (𝐹𝑧) → (𝐹𝑦) ∈ (𝐹𝑦)))
8382con3d 152 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑧) ∈ (𝐹𝑦) → (¬ (𝐹𝑦) ∈ (𝐹𝑦) → ¬ (𝐹𝑦) = (𝐹𝑧)))
8481, 83syl5com 31 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑦) ∈ (𝐴 ∖ (𝐹𝑦)) → ((𝐹𝑧) ∈ (𝐹𝑦) → ¬ (𝐹𝑦) = (𝐹𝑧)))
8580, 84syl8 76 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ⊆ On → (𝑦𝑥 → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → ((𝐹𝑧) ∈ (𝐹𝑦) → ¬ (𝐹𝑦) = (𝐹𝑧)))))
8685com34 91 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ⊆ On → (𝑦𝑥 → ((𝐹𝑧) ∈ (𝐹𝑦) → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → ¬ (𝐹𝑦) = (𝐹𝑧)))))
8776, 86syldd 72 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ⊆ On → (𝑦𝑥 → (𝑧𝑦 → ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → ¬ (𝐹𝑦) = (𝐹𝑧)))))
8887com4r 94 . . . . . . . . . . . . . . . . . . 19 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝑥 ⊆ On → (𝑦𝑥 → (𝑧𝑦 → ¬ (𝐹𝑦) = (𝐹𝑧)))))
8988imp31 417 . . . . . . . . . . . . . . . . . 18 ((((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) ∧ 𝑦𝑥) → (𝑧𝑦 → ¬ (𝐹𝑦) = (𝐹𝑧)))
9069, 89ralrimi 3139 . . . . . . . . . . . . . . . . 17 ((((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) ∧ 𝑦𝑥) → ∀𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧))
9190ex 412 . . . . . . . . . . . . . . . 16 (((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) → (𝑦𝑥 → ∀𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧)))
9268, 91ralrimi 3139 . . . . . . . . . . . . . . 15 (((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) ∧ 𝑥 ⊆ On) → ∀𝑦𝑥𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧))
9392ex 412 . . . . . . . . . . . . . 14 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝑥 ⊆ On → ∀𝑦𝑥𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧)))
9493ancld 550 . . . . . . . . . . . . 13 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝑥 ⊆ On → (𝑥 ⊆ On ∧ ∀𝑦𝑥𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧))))
957tz7.48lem 8242 . . . . . . . . . . . . 13 ((𝑥 ⊆ On ∧ ∀𝑦𝑥𝑧𝑦 ¬ (𝐹𝑦) = (𝐹𝑧)) → Fun (𝐹𝑥))
9665, 94, 95syl56 36 . . . . . . . . . . . 12 ((∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ 𝜑) → (𝑥 ∈ On → Fun (𝐹𝑥)))
9796ancoms 458 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (𝑥 ∈ On → Fun (𝐹𝑥)))
9897imp 406 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) → Fun (𝐹𝑥))
9998adantr 480 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → Fun (𝐹𝑥))
10026, 64, 993jca 1126 . . . . . . . 8 ((((𝜑 ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) = ∅) → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
101100exp41 434 . . . . . . 7 (𝜑 → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (𝑥 ∈ On → ((𝐴 ∖ (𝐹𝑥)) = ∅ → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))))
102101com23 86 . . . . . 6 (𝜑 → (𝑥 ∈ On → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → ((𝐴 ∖ (𝐹𝑥)) = ∅ → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))))
103102com34 91 . . . . 5 (𝜑 → (𝑥 ∈ On → ((𝐴 ∖ (𝐹𝑥)) = ∅ → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))))
104103imp4a 422 . . . 4 (𝜑 → (𝑥 ∈ On → (((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))))
10525, 104reximdai 3239 . . 3 (𝜑 → (∃𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) = ∅ ∧ ∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))
10623, 105syld 47 . 2 (𝜑 → (𝐴𝐵 → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥))))
107106impcom 407 1 ((𝐴𝐵𝜑) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴 ∖ (𝐹𝑦)) ≠ ∅ ∧ (𝐹𝑥) = 𝐴 ∧ Fun (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  c0 4253  ccnv 5579  dom cdm 5580  cres 5582  cima 5583  Oncon0 6251  Fun wfun 6412   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  tz7.49c  8247
  Copyright terms: Public domain W3C validator