MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-2 Structured version   Visualization version   GIF version

Theorem tz7.48-2 8389
Description: Proposition 7.48(2) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.) (Revised by David Abernethy, 5-May-2013.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48-2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem tz7.48-2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssid 3967 . . 3 On ⊆ On
2 onelon 6343 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
32ancoms 460 . . . . . . . 8 ((𝑦𝑥𝑥 ∈ On) → 𝑦 ∈ On)
4 tz7.48.1 . . . . . . . . . . 11 𝐹 Fn On
54fndmi 6607 . . . . . . . . . 10 dom 𝐹 = On
65eleq2i 2830 . . . . . . . . 9 (𝑦 ∈ dom 𝐹𝑦 ∈ On)
7 fnfun 6603 . . . . . . . . . . . . 13 (𝐹 Fn On → Fun 𝐹)
84, 7ax-mp 5 . . . . . . . . . . . 12 Fun 𝐹
9 funfvima 7181 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
108, 9mpan 689 . . . . . . . . . . 11 (𝑦 ∈ dom 𝐹 → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1110impcom 409 . . . . . . . . . 10 ((𝑦𝑥𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ (𝐹𝑥))
12 eleq1a 2833 . . . . . . . . . . 11 ((𝐹𝑦) ∈ (𝐹𝑥) → ((𝐹𝑥) = (𝐹𝑦) → (𝐹𝑥) ∈ (𝐹𝑥)))
13 eldifn 4088 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) ∈ (𝐹𝑥))
1412, 13nsyli 157 . . . . . . . . . 10 ((𝐹𝑦) ∈ (𝐹𝑥) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1511, 14syl 17 . . . . . . . . 9 ((𝑦𝑥𝑦 ∈ dom 𝐹) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
166, 15sylan2br 596 . . . . . . . 8 ((𝑦𝑥𝑦 ∈ On) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
173, 16syldan 592 . . . . . . 7 ((𝑦𝑥𝑥 ∈ On) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1817expimpd 455 . . . . . 6 (𝑦𝑥 → ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1918com12 32 . . . . 5 ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
2019ralrimiv 3143 . . . 4 ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦))
2120ralimiaa 3086 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦))
224tz7.48lem 8388 . . 3 ((On ⊆ On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹 ↾ On))
231, 21, 22sylancr 588 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun (𝐹 ↾ On))
24 fnrel 6605 . . . . . 6 (𝐹 Fn On → Rel 𝐹)
254, 24ax-mp 5 . . . . 5 Rel 𝐹
265eqimssi 4003 . . . . 5 dom 𝐹 ⊆ On
27 relssres 5979 . . . . 5 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
2825, 26, 27mp2an 691 . . . 4 (𝐹 ↾ On) = 𝐹
2928cnveqi 5831 . . 3 (𝐹 ↾ On) = 𝐹
3029funeqi 6523 . 2 (Fun (𝐹 ↾ On) ↔ Fun 𝐹)
3123, 30sylib 217 1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3065  cdif 3908  wss 3911  ccnv 5633  dom cdm 5634  cres 5636  cima 5637  Rel wrel 5639  Oncon0 6318  Fun wfun 6491   Fn wfn 6492  cfv 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fv 6505
This theorem is referenced by:  tz7.48-3  8391
  Copyright terms: Public domain W3C validator