MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-2 Structured version   Visualization version   GIF version

Theorem tz7.48-2 8481
Description: Proposition 7.48(2) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.) (Revised by David Abernethy, 5-May-2013.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48-2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem tz7.48-2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssid 4018 . . 3 On ⊆ On
2 onelon 6411 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
32ancoms 458 . . . . . . . 8 ((𝑦𝑥𝑥 ∈ On) → 𝑦 ∈ On)
4 tz7.48.1 . . . . . . . . . . 11 𝐹 Fn On
54fndmi 6673 . . . . . . . . . 10 dom 𝐹 = On
65eleq2i 2831 . . . . . . . . 9 (𝑦 ∈ dom 𝐹𝑦 ∈ On)
7 fnfun 6669 . . . . . . . . . . . . 13 (𝐹 Fn On → Fun 𝐹)
84, 7ax-mp 5 . . . . . . . . . . . 12 Fun 𝐹
9 funfvima 7250 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
108, 9mpan 690 . . . . . . . . . . 11 (𝑦 ∈ dom 𝐹 → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1110impcom 407 . . . . . . . . . 10 ((𝑦𝑥𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ (𝐹𝑥))
12 eleq1a 2834 . . . . . . . . . . 11 ((𝐹𝑦) ∈ (𝐹𝑥) → ((𝐹𝑥) = (𝐹𝑦) → (𝐹𝑥) ∈ (𝐹𝑥)))
13 eldifn 4142 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) ∈ (𝐹𝑥))
1412, 13nsyli 157 . . . . . . . . . 10 ((𝐹𝑦) ∈ (𝐹𝑥) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1511, 14syl 17 . . . . . . . . 9 ((𝑦𝑥𝑦 ∈ dom 𝐹) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
166, 15sylan2br 595 . . . . . . . 8 ((𝑦𝑥𝑦 ∈ On) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
173, 16syldan 591 . . . . . . 7 ((𝑦𝑥𝑥 ∈ On) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1817expimpd 453 . . . . . 6 (𝑦𝑥 → ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1918com12 32 . . . . 5 ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
2019ralrimiv 3143 . . . 4 ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦))
2120ralimiaa 3080 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦))
224tz7.48lem 8480 . . 3 ((On ⊆ On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹 ↾ On))
231, 21, 22sylancr 587 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun (𝐹 ↾ On))
24 fnrel 6671 . . . . . 6 (𝐹 Fn On → Rel 𝐹)
254, 24ax-mp 5 . . . . 5 Rel 𝐹
265eqimssi 4056 . . . . 5 dom 𝐹 ⊆ On
27 relssres 6042 . . . . 5 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
2825, 26, 27mp2an 692 . . . 4 (𝐹 ↾ On) = 𝐹
2928cnveqi 5888 . . 3 (𝐹 ↾ On) = 𝐹
3029funeqi 6589 . 2 (Fun (𝐹 ↾ On) ↔ Fun 𝐹)
3123, 30sylib 218 1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  cdif 3960  wss 3963  ccnv 5688  dom cdm 5689  cres 5691  cima 5692  Rel wrel 5694  Oncon0 6386  Fun wfun 6557   Fn wfn 6558  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fv 6571
This theorem is referenced by:  tz7.48-3  8483
  Copyright terms: Public domain W3C validator