MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-2 Structured version   Visualization version   GIF version

Theorem tz7.48-2 8070
Description: Proposition 7.48(2) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.) (Revised by David Abernethy, 5-May-2013.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48-2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem tz7.48-2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssid 3975 . . 3 On ⊆ On
2 onelon 6204 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
32ancoms 462 . . . . . . . 8 ((𝑦𝑥𝑥 ∈ On) → 𝑦 ∈ On)
4 tz7.48.1 . . . . . . . . . . 11 𝐹 Fn On
5 fndm 6444 . . . . . . . . . . 11 (𝐹 Fn On → dom 𝐹 = On)
64, 5ax-mp 5 . . . . . . . . . 10 dom 𝐹 = On
76eleq2i 2907 . . . . . . . . 9 (𝑦 ∈ dom 𝐹𝑦 ∈ On)
8 fnfun 6442 . . . . . . . . . . . . 13 (𝐹 Fn On → Fun 𝐹)
94, 8ax-mp 5 . . . . . . . . . . . 12 Fun 𝐹
10 funfvima 6982 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
119, 10mpan 689 . . . . . . . . . . 11 (𝑦 ∈ dom 𝐹 → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1211impcom 411 . . . . . . . . . 10 ((𝑦𝑥𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ (𝐹𝑥))
13 eleq1a 2911 . . . . . . . . . . 11 ((𝐹𝑦) ∈ (𝐹𝑥) → ((𝐹𝑥) = (𝐹𝑦) → (𝐹𝑥) ∈ (𝐹𝑥)))
14 eldifn 4090 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) ∈ (𝐹𝑥))
1513, 14nsyli 160 . . . . . . . . . 10 ((𝐹𝑦) ∈ (𝐹𝑥) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1612, 15syl 17 . . . . . . . . 9 ((𝑦𝑥𝑦 ∈ dom 𝐹) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
177, 16sylan2br 597 . . . . . . . 8 ((𝑦𝑥𝑦 ∈ On) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
183, 17syldan 594 . . . . . . 7 ((𝑦𝑥𝑥 ∈ On) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1918expimpd 457 . . . . . 6 (𝑦𝑥 → ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ¬ (𝐹𝑥) = (𝐹𝑦)))
2019com12 32 . . . . 5 ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
2120ralrimiv 3176 . . . 4 ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦))
2221ralimiaa 3154 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦))
234tz7.48lem 8069 . . 3 ((On ⊆ On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹 ↾ On))
241, 22, 23sylancr 590 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun (𝐹 ↾ On))
25 fnrel 6443 . . . . . 6 (𝐹 Fn On → Rel 𝐹)
264, 25ax-mp 5 . . . . 5 Rel 𝐹
276eqimssi 4011 . . . . 5 dom 𝐹 ⊆ On
28 relssres 5881 . . . . 5 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
2926, 27, 28mp2an 691 . . . 4 (𝐹 ↾ On) = 𝐹
3029cnveqi 5733 . . 3 (𝐹 ↾ On) = 𝐹
3130funeqi 6365 . 2 (Fun (𝐹 ↾ On) ↔ Fun 𝐹)
3224, 31sylib 221 1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2115  wral 3133  cdif 3916  wss 3919  ccnv 5542  dom cdm 5543  cres 5545  cima 5546  Rel wrel 5548  Oncon0 6179  Fun wfun 6338   Fn wfn 6339  cfv 6344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pr 5318
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-ord 6182  df-on 6183  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fv 6352
This theorem is referenced by:  tz7.48-3  8072
  Copyright terms: Public domain W3C validator