MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-2 Structured version   Visualization version   GIF version

Theorem tz7.48-2 8461
Description: Proposition 7.48(2) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.) (Revised by David Abernethy, 5-May-2013.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48-2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem tz7.48-2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssid 3986 . . 3 On ⊆ On
2 onelon 6382 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
32ancoms 458 . . . . . . . 8 ((𝑦𝑥𝑥 ∈ On) → 𝑦 ∈ On)
4 tz7.48.1 . . . . . . . . . . 11 𝐹 Fn On
54fndmi 6647 . . . . . . . . . 10 dom 𝐹 = On
65eleq2i 2827 . . . . . . . . 9 (𝑦 ∈ dom 𝐹𝑦 ∈ On)
7 fnfun 6643 . . . . . . . . . . . . 13 (𝐹 Fn On → Fun 𝐹)
84, 7ax-mp 5 . . . . . . . . . . . 12 Fun 𝐹
9 funfvima 7227 . . . . . . . . . . . 12 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
108, 9mpan 690 . . . . . . . . . . 11 (𝑦 ∈ dom 𝐹 → (𝑦𝑥 → (𝐹𝑦) ∈ (𝐹𝑥)))
1110impcom 407 . . . . . . . . . 10 ((𝑦𝑥𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ (𝐹𝑥))
12 eleq1a 2830 . . . . . . . . . . 11 ((𝐹𝑦) ∈ (𝐹𝑥) → ((𝐹𝑥) = (𝐹𝑦) → (𝐹𝑥) ∈ (𝐹𝑥)))
13 eldifn 4112 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) ∈ (𝐹𝑥))
1412, 13nsyli 157 . . . . . . . . . 10 ((𝐹𝑦) ∈ (𝐹𝑥) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1511, 14syl 17 . . . . . . . . 9 ((𝑦𝑥𝑦 ∈ dom 𝐹) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
166, 15sylan2br 595 . . . . . . . 8 ((𝑦𝑥𝑦 ∈ On) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
173, 16syldan 591 . . . . . . 7 ((𝑦𝑥𝑥 ∈ On) → ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1817expimpd 453 . . . . . 6 (𝑦𝑥 → ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ¬ (𝐹𝑥) = (𝐹𝑦)))
1918com12 32 . . . . 5 ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → (𝑦𝑥 → ¬ (𝐹𝑥) = (𝐹𝑦)))
2019ralrimiv 3132 . . . 4 ((𝑥 ∈ On ∧ (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦))
2120ralimiaa 3073 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦))
224tz7.48lem 8460 . . 3 ((On ⊆ On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 ¬ (𝐹𝑥) = (𝐹𝑦)) → Fun (𝐹 ↾ On))
231, 21, 22sylancr 587 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun (𝐹 ↾ On))
24 fnrel 6645 . . . . . 6 (𝐹 Fn On → Rel 𝐹)
254, 24ax-mp 5 . . . . 5 Rel 𝐹
265eqimssi 4024 . . . . 5 dom 𝐹 ⊆ On
27 relssres 6014 . . . . 5 ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹)
2825, 26, 27mp2an 692 . . . 4 (𝐹 ↾ On) = 𝐹
2928cnveqi 5859 . . 3 (𝐹 ↾ On) = 𝐹
3029funeqi 6562 . 2 (Fun (𝐹 ↾ On) ↔ Fun 𝐹)
3123, 30sylib 218 1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  cdif 3928  wss 3931  ccnv 5658  dom cdm 5659  cres 5661  cima 5662  Rel wrel 5664  Oncon0 6357  Fun wfun 6530   Fn wfn 6531  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fv 6544
This theorem is referenced by:  tz7.48-3  8463
  Copyright terms: Public domain W3C validator