MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndomogOLD Structured version   Visualization version   GIF version

Theorem nndomogOLD 8983
Description: Obsolete version of nndomog 8973 as of 29-Nov-2024. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 8988. (Revised by RP, 5-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nndomogOLD ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nndomogOLD
StepHypRef Expression
1 php2 8967 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)
21ex 413 . . . . 5 (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))
3 domnsym 8860 . . . . 5 (𝐴𝐵 → ¬ 𝐵𝐴)
42, 3nsyli 157 . . . 4 (𝐴 ∈ ω → (𝐴𝐵 → ¬ 𝐵𝐴))
54adantr 481 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵 → ¬ 𝐵𝐴))
6 nnord 7709 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
7 eloni 6274 . . . 4 (𝐵 ∈ On → Ord 𝐵)
8 ordtri1 6297 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
9 ordelpss 6292 . . . . . . 7 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
109ancoms 459 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
1110notbid 318 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐴))
128, 11bitrd 278 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
136, 7, 12syl2an 596 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
145, 13sylibrd 258 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
15 ssdomg 8761 . . 3 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
1615adantl 482 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
1714, 16impbid 211 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2110  wss 3892  wpss 3893   class class class wbr 5079  Ord word 6263  Oncon0 6264  ωcom 7701  cdom 8706  csdm 8707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-om 7702  df-1o 8282  df-er 8473  df-en 8709  df-dom 8710  df-sdom 8711  df-fin 8712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator