MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nndomogOLD Structured version   Visualization version   GIF version

Theorem nndomogOLD 9047
Description: Obsolete version of nndomog 9037 as of 29-Nov-2024. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9054. (Revised by RP, 5-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nndomogOLD ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))

Proof of Theorem nndomogOLD
StepHypRef Expression
1 php2 9032 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)
21ex 414 . . . . 5 (𝐴 ∈ ω → (𝐵𝐴𝐵𝐴))
3 domnsym 8924 . . . . 5 (𝐴𝐵 → ¬ 𝐵𝐴)
42, 3nsyli 157 . . . 4 (𝐴 ∈ ω → (𝐴𝐵 → ¬ 𝐵𝐴))
54adantr 482 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵 → ¬ 𝐵𝐴))
6 nnord 7752 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
7 eloni 6291 . . . 4 (𝐵 ∈ On → Ord 𝐵)
8 ordtri1 6314 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
9 ordelpss 6309 . . . . . . 7 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐵𝐴))
109ancoms 460 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴𝐵𝐴))
1110notbid 318 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐴))
128, 11bitrd 279 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
136, 7, 12syl2an 597 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
145, 13sylibrd 259 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
15 ssdomg 8821 . . 3 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
1615adantl 483 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
1714, 16impbid 211 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2104  wss 3892  wpss 3893   class class class wbr 5081  Ord word 6280  Oncon0 6281  ωcom 7744  cdom 8762  csdm 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-om 7745  df-1o 8328  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator