![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nndomogOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nndomog 9218 as of 29-Nov-2024. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9235. (Revised by RP, 5-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nndomogOLD | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | php2 9213 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | |
2 | 1 | ex 411 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴)) |
3 | domnsym 9101 | . . . . 5 ⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) | |
4 | 2, 3 | nsyli 157 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
5 | 4 | adantr 479 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → ¬ 𝐵 ⊊ 𝐴)) |
6 | nnord 7865 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
7 | eloni 6373 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
8 | ordtri1 6396 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
9 | ordelpss 6391 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) | |
10 | 9 | ancoms 457 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴)) |
11 | 10 | notbid 317 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ⊊ 𝐴)) |
12 | 8, 11 | bitrd 278 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
13 | 6, 7, 12 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ⊊ 𝐴)) |
14 | 5, 13 | sylibrd 258 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 → 𝐴 ⊆ 𝐵)) |
15 | ssdomg 8998 | . . 3 ⊢ (𝐵 ∈ On → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | |
16 | 15 | adantl 480 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) |
17 | 14, 16 | impbid 211 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2104 ⊆ wss 3947 ⊊ wpss 3948 class class class wbr 5147 Ord word 6362 Oncon0 6363 ωcom 7857 ≼ cdom 8939 ≺ csdm 8940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7858 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |