| Step | Hyp | Ref
| Expression |
| 1 | | poimir.0 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → 𝑁 ∈ ℕ) |
| 3 | | poimirlem4.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 4 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → 𝐾 ∈ ℕ) |
| 5 | | poimirlem4.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 6 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → 𝑀 ∈
ℕ0) |
| 7 | | poimirlem4.3 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 < 𝑁) |
| 8 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → 𝑀 < 𝑁) |
| 9 | | xp1st 8047 |
. . . . . . . . 9
⊢ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (1st ‘𝑡) ∈ ((0..^𝐾) ↑m (1...𝑀))) |
| 10 | | elmapi 8890 |
. . . . . . . . 9
⊢
((1st ‘𝑡) ∈ ((0..^𝐾) ↑m (1...𝑀)) → (1st ‘𝑡):(1...𝑀)⟶(0..^𝐾)) |
| 11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (1st ‘𝑡):(1...𝑀)⟶(0..^𝐾)) |
| 12 | 11 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → (1st ‘𝑡):(1...𝑀)⟶(0..^𝐾)) |
| 13 | | xp2nd 8048 |
. . . . . . . . 9
⊢ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (2nd ‘𝑡) ∈ {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) |
| 14 | | fvex 6918 |
. . . . . . . . . 10
⊢
(2nd ‘𝑡) ∈ V |
| 15 | | f1oeq1 6835 |
. . . . . . . . . 10
⊢ (𝑓 = (2nd ‘𝑡) → (𝑓:(1...𝑀)–1-1-onto→(1...𝑀) ↔ (2nd ‘𝑡):(1...𝑀)–1-1-onto→(1...𝑀))) |
| 16 | 14, 15 | elab 3678 |
. . . . . . . . 9
⊢
((2nd ‘𝑡) ∈ {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)} ↔ (2nd ‘𝑡):(1...𝑀)–1-1-onto→(1...𝑀)) |
| 17 | 13, 16 | sylib 218 |
. . . . . . . 8
⊢ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (2nd ‘𝑡):(1...𝑀)–1-1-onto→(1...𝑀)) |
| 18 | 17 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → (2nd ‘𝑡):(1...𝑀)–1-1-onto→(1...𝑀)) |
| 19 | 2, 4, 6, 8, 12, 18 | poimirlem3 37631 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → (〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
∈ (((0..^𝐾)
↑m (1...(𝑀
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉})
∘f + (((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ (((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧
(((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})‘(𝑀 + 1)) =
(𝑀 +
1))))) |
| 20 | | fvex 6918 |
. . . . . . . . . . . . . . . 16
⊢
(1st ‘𝑡) ∈ V |
| 21 | | snex 5435 |
. . . . . . . . . . . . . . . 16
⊢
{〈(𝑀 + 1),
0〉} ∈ V |
| 22 | 20, 21 | unex 7765 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}) ∈ V |
| 23 | | snex 5435 |
. . . . . . . . . . . . . . . 16
⊢
{〈(𝑀 + 1),
(𝑀 + 1)〉} ∈
V |
| 24 | 14, 23 | unex 7765 |
. . . . . . . . . . . . . . 15
⊢
((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∈ V |
| 25 | 22, 24 | op1std 8025 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ (1st ‘𝑠) = ((1st ‘𝑡) ∪ {〈(𝑀 + 1),
0〉})) |
| 26 | 22, 24 | op2ndd 8026 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ (2nd ‘𝑠) = ((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})) |
| 27 | 26 | imaeq1d 6076 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ ((2nd ‘𝑠) “ (1...𝑗)) = (((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗))) |
| 28 | 27 | xpeq1d 5713 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ (((2nd ‘𝑠) “ (1...𝑗)) × {1}) = ((((2nd
‘𝑡) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) ×
{1})) |
| 29 | 26 | imaeq1d 6076 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ ((2nd ‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) = (((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 30 | 29 | xpeq1d 5713 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ (((2nd ‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = ((((2nd
‘𝑡) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) |
| 31 | 28, 30 | uneq12d 4168 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) = (((((2nd
‘𝑡) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) |
| 32 | 25, 31 | oveq12d 7450 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ ((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) =
(((1st ‘𝑡)
∪ {〈(𝑀 + 1),
0〉}) ∘f + (((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})))) |
| 33 | 32 | uneq1d 4166 |
. . . . . . . . . . . 12
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ (((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪
((((𝑀 + 1) + 1)...𝑁) × {0})) =
((((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}) ∘f +
(((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
| 34 | 33 | csbeq1d 3902 |
. . . . . . . . . . 11
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ ⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪
((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋((((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉})
∘f + (((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 35 | 34 | eqeq2d 2747 |
. . . . . . . . . 10
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ (𝑖 =
⦋(((1st ‘𝑠) ∘f + ((((2nd
‘𝑠) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪
((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋((((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉})
∘f + (((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 36 | 35 | rexbidv 3178 |
. . . . . . . . 9
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ (∃𝑗 ∈
(0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉})
∘f + (((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 37 | 36 | ralbidv 3177 |
. . . . . . . 8
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ (∀𝑖 ∈
(0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉})
∘f + (((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 38 | 25 | fveq1d 6907 |
. . . . . . . . 9
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ ((1st ‘𝑠)‘(𝑀 + 1)) = (((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1))) |
| 39 | 38 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ (((1st ‘𝑠)‘(𝑀 + 1)) = 0 ↔ (((1st
‘𝑡) ∪
{〈(𝑀 + 1),
0〉})‘(𝑀 + 1)) =
0)) |
| 40 | 26 | fveq1d 6907 |
. . . . . . . . 9
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ ((2nd ‘𝑠)‘(𝑀 + 1)) = (((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1))) |
| 41 | 40 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ (((2nd ‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1) ↔ (((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉})‘(𝑀 + 1)) = (𝑀 + 1))) |
| 42 | 37, 39, 41 | 3anbi123d 1437 |
. . . . . . 7
⊢ (𝑠 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
→ ((∀𝑖 ∈
(0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉})
∘f + (((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ (((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧
(((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})‘(𝑀 + 1)) =
(𝑀 + 1)))) |
| 43 | 42 | elrab 3691 |
. . . . . 6
⊢
(〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}), ((2nd
‘𝑡) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})〉 ∈
{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))} ↔ (〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
∈ (((0..^𝐾)
↑m (1...(𝑀
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉})
∘f + (((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ (((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉})‘(𝑀 + 1)) = 0 ∧
(((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})‘(𝑀 + 1)) =
(𝑀 + 1)))) |
| 44 | 19, 43 | imbitrrdi 252 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
∈ {𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑀
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))})) |
| 45 | 44 | ralrimiva 3145 |
. . . 4
⊢ (𝜑 → ∀𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})(∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
∈ {𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑀
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))})) |
| 46 | | fveq2 6905 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (1st ‘𝑠) = (1st ‘𝑡)) |
| 47 | | fveq2 6905 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑡 → (2nd ‘𝑠) = (2nd ‘𝑡)) |
| 48 | 47 | imaeq1d 6076 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → ((2nd ‘𝑠) “ (1...𝑗)) = ((2nd
‘𝑡) “
(1...𝑗))) |
| 49 | 48 | xpeq1d 5713 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → (((2nd ‘𝑠) “ (1...𝑗)) × {1}) =
(((2nd ‘𝑡)
“ (1...𝑗)) ×
{1})) |
| 50 | 47 | imaeq1d 6076 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → ((2nd ‘𝑠) “ ((𝑗 + 1)...𝑀)) = ((2nd ‘𝑡) “ ((𝑗 + 1)...𝑀))) |
| 51 | 50 | xpeq1d 5713 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → (((2nd ‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}) = (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0})) |
| 52 | 49, 51 | uneq12d 4168 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...𝑀)) × {0})) =
((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) |
| 53 | 46, 52 | oveq12d 7450 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) = ((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0})))) |
| 54 | 53 | uneq1d 4166 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = (((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0}))) |
| 55 | 54 | csbeq1d 3902 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 56 | 55 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 57 | 56 | rexbidv 3178 |
. . . . . 6
⊢ (𝑠 = 𝑡 → (∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 58 | 57 | ralbidv 3177 |
. . . . 5
⊢ (𝑠 = 𝑡 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 59 | 58 | ralrab 3698 |
. . . 4
⊢
(∀𝑡 ∈
{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
∈ {𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑀
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))} ↔ ∀𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})(∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
∈ {𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑀
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))})) |
| 60 | 45, 59 | sylibr 234 |
. . 3
⊢ (𝜑 → ∀𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
∈ {𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑀
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))}) |
| 61 | | xp1st 8047 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → (1st ‘𝑘) ∈ ((0..^𝐾) ↑m (1...(𝑀 + 1)))) |
| 62 | | elmapi 8890 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑘) ∈ ((0..^𝐾) ↑m (1...(𝑀 + 1))) → (1st ‘𝑘):(1...(𝑀 + 1))⟶(0..^𝐾)) |
| 63 | 61, 62 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → (1st ‘𝑘):(1...(𝑀 + 1))⟶(0..^𝐾)) |
| 64 | | fzssp1 13608 |
. . . . . . . . . . . . . 14
⊢
(1...𝑀) ⊆
(1...(𝑀 +
1)) |
| 65 | | fssres 6773 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘𝑘):(1...(𝑀 + 1))⟶(0..^𝐾) ∧ (1...𝑀) ⊆ (1...(𝑀 + 1))) → ((1st ‘𝑘) ↾ (1...𝑀)):(1...𝑀)⟶(0..^𝐾)) |
| 66 | 63, 64, 65 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → ((1st
‘𝑘) ↾
(1...𝑀)):(1...𝑀)⟶(0..^𝐾)) |
| 67 | | ovex 7465 |
. . . . . . . . . . . . . 14
⊢
(0..^𝐾) ∈
V |
| 68 | | ovex 7465 |
. . . . . . . . . . . . . 14
⊢
(1...𝑀) ∈
V |
| 69 | 67, 68 | elmap 8912 |
. . . . . . . . . . . . 13
⊢
(((1st ‘𝑘) ↾ (1...𝑀)) ∈ ((0..^𝐾) ↑m (1...𝑀)) ↔ ((1st ‘𝑘) ↾ (1...𝑀)):(1...𝑀)⟶(0..^𝐾)) |
| 70 | 66, 69 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → ((1st
‘𝑘) ↾
(1...𝑀)) ∈ ((0..^𝐾) ↑m (1...𝑀))) |
| 71 | 70 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((1st ‘𝑘) ↾ (1...𝑀)) ∈ ((0..^𝐾) ↑m (1...𝑀))) |
| 72 | | xp2nd 8048 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → (2nd ‘𝑘) ∈ {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) |
| 73 | | fvex 6918 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘𝑘) ∈ V |
| 74 | | f1oeq1 6835 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = (2nd ‘𝑘) → (𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) ↔ (2nd ‘𝑘):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)))) |
| 75 | 73, 74 | elab 3678 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘𝑘) ∈ {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))} ↔ (2nd ‘𝑘):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))) |
| 76 | 72, 75 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → (2nd ‘𝑘):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))) |
| 77 | | f1of1 6846 |
. . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑘):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) → (2nd ‘𝑘):(1...(𝑀 + 1))–1-1→(1...(𝑀 + 1))) |
| 78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → (2nd ‘𝑘):(1...(𝑀 + 1))–1-1→(1...(𝑀 + 1))) |
| 79 | | f1ores 6861 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘𝑘):(1...(𝑀 + 1))–1-1→(1...(𝑀 + 1)) ∧ (1...𝑀) ⊆ (1...(𝑀 + 1))) → ((2nd ‘𝑘) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→((2nd ‘𝑘) “ (1...𝑀))) |
| 80 | 78, 64, 79 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → ((2nd
‘𝑘) ↾
(1...𝑀)):(1...𝑀)–1-1-onto→((2nd ‘𝑘) “ (1...𝑀))) |
| 81 | 80 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((2nd ‘𝑘) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→((2nd ‘𝑘) “ (1...𝑀))) |
| 82 | | dff1o3 6853 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑘):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) ↔ ((2nd ‘𝑘):(1...(𝑀 + 1))–onto→(1...(𝑀 + 1)) ∧ Fun ◡(2nd ‘𝑘))) |
| 83 | 82 | simprbi 496 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘𝑘):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) → Fun ◡(2nd ‘𝑘)) |
| 84 | | imadif 6649 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
◡(2nd ‘𝑘) → ((2nd
‘𝑘) “
((1...(𝑀 + 1)) ∖
{(𝑀 + 1)})) =
(((2nd ‘𝑘)
“ (1...(𝑀 + 1)))
∖ ((2nd ‘𝑘) “ {(𝑀 + 1)}))) |
| 85 | 76, 83, 84 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → ((2nd
‘𝑘) “
((1...(𝑀 + 1)) ∖
{(𝑀 + 1)})) =
(((2nd ‘𝑘)
“ (1...(𝑀 + 1)))
∖ ((2nd ‘𝑘) “ {(𝑀 + 1)}))) |
| 86 | 85 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((2nd ‘𝑘) “ ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)})) = (((2nd
‘𝑘) “
(1...(𝑀 + 1))) ∖
((2nd ‘𝑘)
“ {(𝑀 +
1)}))) |
| 87 | | f1ofo 6854 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑘):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) → (2nd ‘𝑘):(1...(𝑀 + 1))–onto→(1...(𝑀 + 1))) |
| 88 | | foima 6824 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑘):(1...(𝑀 + 1))–onto→(1...(𝑀 + 1)) → ((2nd ‘𝑘) “ (1...(𝑀 + 1))) = (1...(𝑀 + 1))) |
| 89 | 76, 87, 88 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → ((2nd
‘𝑘) “
(1...(𝑀 + 1))) =
(1...(𝑀 +
1))) |
| 90 | 89 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((2nd ‘𝑘) “ (1...(𝑀 + 1))) = (1...(𝑀 + 1))) |
| 91 | | f1ofn 6848 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑘):(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1)) → (2nd ‘𝑘) Fn (1...(𝑀 + 1))) |
| 92 | 76, 91 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → (2nd ‘𝑘) Fn (1...(𝑀 + 1))) |
| 93 | | nn0p1nn 12567 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ ℕ0
→ (𝑀 + 1) ∈
ℕ) |
| 94 | 5, 93 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
| 95 | | elfz1end 13595 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 + 1) ∈ ℕ ↔
(𝑀 + 1) ∈ (1...(𝑀 + 1))) |
| 96 | 94, 95 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑀 + 1) ∈ (1...(𝑀 + 1))) |
| 97 | | fnsnfv 6987 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((2nd ‘𝑘) Fn (1...(𝑀 + 1)) ∧ (𝑀 + 1) ∈ (1...(𝑀 + 1))) → {((2nd
‘𝑘)‘(𝑀 + 1))} = ((2nd
‘𝑘) “ {(𝑀 + 1)})) |
| 98 | 92, 96, 97 | syl2anr 597 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) → {((2nd
‘𝑘)‘(𝑀 + 1))} = ((2nd
‘𝑘) “ {(𝑀 + 1)})) |
| 99 | | sneq 4635 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1) → {((2nd ‘𝑘)‘(𝑀 + 1))} = {(𝑀 + 1)}) |
| 100 | 98, 99 | sylan9req 2797 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((2nd ‘𝑘) “ {(𝑀 + 1)}) = {(𝑀 + 1)}) |
| 101 | 90, 100 | difeq12d 4126 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → (((2nd ‘𝑘) “ (1...(𝑀 + 1))) ∖ ((2nd
‘𝑘) “ {(𝑀 + 1)})) = ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)})) |
| 102 | 86, 101 | eqtrd 2776 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((2nd ‘𝑘) “ ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)})) = ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)})) |
| 103 | | 1z 12649 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℤ |
| 104 | | nn0uz 12921 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
ℕ0 = (ℤ≥‘0) |
| 105 | | 1m1e0 12339 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1
− 1) = 0 |
| 106 | 105 | fveq2i 6908 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(ℤ≥‘(1 − 1)) =
(ℤ≥‘0) |
| 107 | 104, 106 | eqtr4i 2767 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
ℕ0 = (ℤ≥‘(1 −
1)) |
| 108 | 5, 107 | eleqtrdi 2850 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(1
− 1))) |
| 109 | | fzsuc2 13623 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1
∈ ℤ ∧ 𝑀
∈ (ℤ≥‘(1 − 1))) → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)})) |
| 110 | 103, 108,
109 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)})) |
| 111 | 110 | difeq1d 4124 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)}) = (((1...𝑀) ∪ {(𝑀 + 1)}) ∖ {(𝑀 + 1)})) |
| 112 | | difun2 4480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((1...𝑀) ∪
{(𝑀 + 1)}) ∖ {(𝑀 + 1)}) = ((1...𝑀) ∖ {(𝑀 + 1)}) |
| 113 | 111, 112 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)}) = ((1...𝑀) ∖ {(𝑀 + 1)})) |
| 114 | 5 | nn0red 12590 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 115 | | ltp1 12108 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 ∈ ℝ → 𝑀 < (𝑀 + 1)) |
| 116 | | peano2re 11435 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈
ℝ) |
| 117 | | ltnle 11341 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑀 ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ) →
(𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀)) |
| 118 | 116, 117 | mpdan 687 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 ∈ ℝ → (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀)) |
| 119 | 115, 118 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ ℝ → ¬
(𝑀 + 1) ≤ 𝑀) |
| 120 | 114, 119 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ¬ (𝑀 + 1) ≤ 𝑀) |
| 121 | | elfzle2 13569 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 + 1) ∈ (1...𝑀) → (𝑀 + 1) ≤ 𝑀) |
| 122 | 120, 121 | nsyl 140 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ (𝑀 + 1) ∈ (1...𝑀)) |
| 123 | | difsn 4797 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝑀 + 1) ∈ (1...𝑀) → ((1...𝑀) ∖ {(𝑀 + 1)}) = (1...𝑀)) |
| 124 | 122, 123 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((1...𝑀) ∖ {(𝑀 + 1)}) = (1...𝑀)) |
| 125 | 113, 124 | eqtrd 2776 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)}) = (1...𝑀)) |
| 126 | 125 | imaeq2d 6077 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((2nd
‘𝑘) “
((1...(𝑀 + 1)) ∖
{(𝑀 + 1)})) =
((2nd ‘𝑘)
“ (1...𝑀))) |
| 127 | 126 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((2nd ‘𝑘) “ ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)})) = ((2nd
‘𝑘) “
(1...𝑀))) |
| 128 | 125 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)}) = (1...𝑀)) |
| 129 | 102, 127,
128 | 3eqtr3d 2784 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((2nd ‘𝑘) “ (1...𝑀)) = (1...𝑀)) |
| 130 | 129 | f1oeq3d 6844 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → (((2nd ‘𝑘) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→((2nd ‘𝑘) “ (1...𝑀)) ↔ ((2nd ‘𝑘) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→(1...𝑀))) |
| 131 | 81, 130 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((2nd ‘𝑘) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→(1...𝑀)) |
| 132 | 73 | resex 6046 |
. . . . . . . . . . . . 13
⊢
((2nd ‘𝑘) ↾ (1...𝑀)) ∈ V |
| 133 | | f1oeq1 6835 |
. . . . . . . . . . . . 13
⊢ (𝑓 = ((2nd ‘𝑘) ↾ (1...𝑀)) → (𝑓:(1...𝑀)–1-1-onto→(1...𝑀) ↔ ((2nd ‘𝑘) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→(1...𝑀))) |
| 134 | 132, 133 | elab 3678 |
. . . . . . . . . . . 12
⊢
(((2nd ‘𝑘) ↾ (1...𝑀)) ∈ {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)} ↔ ((2nd ‘𝑘) ↾ (1...𝑀)):(1...𝑀)–1-1-onto→(1...𝑀)) |
| 135 | 131, 134 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((2nd ‘𝑘) ↾ (1...𝑀)) ∈ {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) |
| 136 | 71, 135 | opelxpd 5723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 ∈
(((0..^𝐾)
↑m (1...𝑀))
× {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) |
| 137 | 136 | 3ad2antr3 1190 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) → 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 ∈
(((0..^𝐾)
↑m (1...𝑀))
× {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) |
| 138 | | 3anass 1094 |
. . . . . . . . . . 11
⊢
((∀𝑖 ∈
(0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ (((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)))) |
| 139 | 138 | biancomi 462 |
. . . . . . . . . 10
⊢
((∀𝑖 ∈
(0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ↔ ((((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 140 | 94 | nnzd 12642 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 141 | | uzid 12894 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑀 + 1) ∈ ℤ →
(𝑀 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 142 | | peano2uz 12944 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑀 + 1) ∈
(ℤ≥‘(𝑀 + 1)) → ((𝑀 + 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 143 | 140, 141,
142 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((𝑀 + 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 144 | 5 | nn0zd 12641 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 145 | 1 | nnzd 12642 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 146 | | zltp1le 12669 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| 147 | | peano2z 12660 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈
ℤ) |
| 148 | | eluz 12893 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) ↔ (𝑀 + 1) ≤ 𝑁)) |
| 149 | 147, 148 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) ↔ (𝑀 + 1) ≤ 𝑁)) |
| 150 | 146, 149 | bitr4d 282 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 151 | 144, 145,
150 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑀 < 𝑁 ↔ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 152 | 7, 151 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) |
| 153 | | fzsplit2 13590 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑀 + 1) + 1) ∈
(ℤ≥‘(𝑀 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑀 + 1)...𝑁) = (((𝑀 + 1)...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))) |
| 154 | 143, 152,
153 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑀 + 1)...𝑁) = (((𝑀 + 1)...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁))) |
| 155 | | fzsn 13607 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑀 + 1) ∈ ℤ →
((𝑀 + 1)...(𝑀 + 1)) = {(𝑀 + 1)}) |
| 156 | 140, 155 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((𝑀 + 1)...(𝑀 + 1)) = {(𝑀 + 1)}) |
| 157 | 156 | uneq1d 4166 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (((𝑀 + 1)...(𝑀 + 1)) ∪ (((𝑀 + 1) + 1)...𝑁)) = ({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁))) |
| 158 | 154, 157 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((𝑀 + 1)...𝑁) = ({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁))) |
| 159 | 158 | xpeq1d 5713 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (((𝑀 + 1)...𝑁) × {0}) = (({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0})) |
| 160 | 159 | uneq2d 4167 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
(((𝑀 + 1)...𝑁) × {0})) = ((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
(({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0}))) |
| 161 | | xpundir 5754 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0}) = (({(𝑀 + 1)} × {0}) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) |
| 162 | | ovex 7465 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑀 + 1) ∈ V |
| 163 | | c0ex 11256 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
V |
| 164 | 162, 163 | xpsn 7160 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({(𝑀 + 1)} × {0}) =
{〈(𝑀 + 1),
0〉} |
| 165 | 164 | uneq1i 4163 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({(𝑀 + 1)} × {0}) ∪
((((𝑀 + 1) + 1)...𝑁) × {0})) = ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) |
| 166 | 161, 165 | eqtri 2764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0}) = ({〈(𝑀 + 1), 0〉} ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) |
| 167 | 166 | uneq2i 4164 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
(({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0})) = ((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
({〈(𝑀 + 1), 0〉}
∪ ((((𝑀 + 1) +
1)...𝑁) ×
{0}))) |
| 168 | | unass 4171 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
{〈(𝑀 + 1), 0〉})
∪ ((((𝑀 + 1) +
1)...𝑁) × {0})) =
((𝑛 ∈ (1...𝑀) ↦ (((1st
‘𝑘)‘𝑛) + (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
({〈(𝑀 + 1), 0〉}
∪ ((((𝑀 + 1) +
1)...𝑁) ×
{0}))) |
| 169 | 167, 168 | eqtr4i 2767 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
(({(𝑀 + 1)} ∪ (((𝑀 + 1) + 1)...𝑁)) × {0})) = (((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
{〈(𝑀 + 1), 0〉})
∪ ((((𝑀 + 1) +
1)...𝑁) ×
{0})) |
| 170 | 160, 169 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
(((𝑀 + 1)...𝑁) × {0})) = (((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
{〈(𝑀 + 1), 0〉})
∪ ((((𝑀 + 1) +
1)...𝑁) ×
{0}))) |
| 171 | 170 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
(((𝑀 + 1)...𝑁) × {0})) = (((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
{〈(𝑀 + 1), 0〉})
∪ ((((𝑀 + 1) +
1)...𝑁) ×
{0}))) |
| 172 | 162 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑀 + 1) ∈ V) |
| 173 | 163 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → 0 ∈ V) |
| 174 | 110 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((1...𝑀) ∪ {(𝑀 + 1)}) = (1...(𝑀 + 1))) |
| 175 | 174 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → ((1...𝑀) ∪ {(𝑀 + 1)}) = (1...(𝑀 + 1))) |
| 176 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (𝑀 + 1) → ((1st ‘𝑘)‘𝑛) = ((1st ‘𝑘)‘(𝑀 + 1))) |
| 177 | | fveq2 6905 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (𝑀 + 1) → (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛) =
(((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘(𝑀 + 1))) |
| 178 | 176, 177 | oveq12d 7450 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = (𝑀 + 1) → (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛)) =
(((1st ‘𝑘)‘(𝑀 + 1)) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘(𝑀 +
1)))) |
| 179 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → ((1st ‘𝑘)‘(𝑀 + 1)) = 0) |
| 180 | | imain 6650 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (Fun
◡(2nd ‘𝑘) → ((2nd
‘𝑘) “
((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = (((2nd ‘𝑘) “ (1...𝑗)) ∩ ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))))) |
| 181 | 76, 83, 180 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → ((2nd
‘𝑘) “
((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = (((2nd ‘𝑘) “ (1...𝑗)) ∩ ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))))) |
| 182 | 181 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((2nd ‘𝑘) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = (((2nd ‘𝑘) “ (1...𝑗)) ∩ ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))))) |
| 183 | | elfznn0 13661 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0) |
| 184 | 183 | nn0red 12590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ) |
| 185 | 184 | ltp1d 12199 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 < (𝑗 + 1)) |
| 186 | | fzdisj 13592 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1))) = ∅) |
| 187 | 185, 186 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑀) → ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1))) = ∅) |
| 188 | 187 | imaeq2d 6077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑀) → ((2nd ‘𝑘) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = ((2nd ‘𝑘) “
∅)) |
| 189 | | ima0 6094 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((2nd ‘𝑘) “ ∅) = ∅ |
| 190 | 188, 189 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑀) → ((2nd ‘𝑘) “ ((1...𝑗) ∩ ((𝑗 + 1)...(𝑀 + 1)))) = ∅) |
| 191 | 182, 190 | sylan9req 2797 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (((2nd ‘𝑘) “ (1...𝑗)) ∩ ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅) |
| 192 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) |
| 193 | 92 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → (2nd ‘𝑘) Fn (1...(𝑀 + 1))) |
| 194 | | nn0p1nn 12567 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
ℕ) |
| 195 | | nnuz 12922 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ℕ =
(ℤ≥‘1) |
| 196 | 194, 195 | eleqtrdi 2850 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ ℕ0
→ (𝑗 + 1) ∈
(ℤ≥‘1)) |
| 197 | | fzss1 13604 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑗 + 1) ∈
(ℤ≥‘1) → ((𝑗 + 1)...(𝑀 + 1)) ⊆ (1...(𝑀 + 1))) |
| 198 | 183, 196,
197 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑀) → ((𝑗 + 1)...(𝑀 + 1)) ⊆ (1...(𝑀 + 1))) |
| 199 | | elfzuz3 13562 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ (ℤ≥‘𝑗)) |
| 200 | | eluzp1p1 12907 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑀 ∈
(ℤ≥‘𝑗) → (𝑀 + 1) ∈
(ℤ≥‘(𝑗 + 1))) |
| 201 | | eluzfz2 13573 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑀 + 1) ∈
(ℤ≥‘(𝑗 + 1)) → (𝑀 + 1) ∈ ((𝑗 + 1)...(𝑀 + 1))) |
| 202 | 199, 200,
201 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈ ((𝑗 + 1)...(𝑀 + 1))) |
| 203 | 198, 202 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑀) → (((𝑗 + 1)...(𝑀 + 1)) ⊆ (1...(𝑀 + 1)) ∧ (𝑀 + 1) ∈ ((𝑗 + 1)...(𝑀 + 1)))) |
| 204 | | fnfvima 7254 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((2nd ‘𝑘) Fn (1...(𝑀 + 1)) ∧ ((𝑗 + 1)...(𝑀 + 1)) ⊆ (1...(𝑀 + 1)) ∧ (𝑀 + 1) ∈ ((𝑗 + 1)...(𝑀 + 1))) → ((2nd ‘𝑘)‘(𝑀 + 1)) ∈ ((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 205 | 204 | 3expb 1120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((2nd ‘𝑘) Fn (1...(𝑀 + 1)) ∧ (((𝑗 + 1)...(𝑀 + 1)) ⊆ (1...(𝑀 + 1)) ∧ (𝑀 + 1) ∈ ((𝑗 + 1)...(𝑀 + 1)))) → ((2nd
‘𝑘)‘(𝑀 + 1)) ∈ ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 206 | 193, 203,
205 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((2nd ‘𝑘)‘(𝑀 + 1)) ∈ ((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 207 | 192, 206 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑀 + 1) ∈ ((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 208 | | 1ex 11258 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 1 ∈
V |
| 209 | | fnconstg 6795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (1 ∈
V → (((2nd ‘𝑘) “ (1...𝑗)) × {1}) Fn ((2nd
‘𝑘) “
(1...𝑗))) |
| 210 | 208, 209 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘𝑘) “ (1...𝑗)) × {1}) Fn ((2nd
‘𝑘) “
(1...𝑗)) |
| 211 | | fnconstg 6795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (0 ∈
V → (((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 212 | 163, 211 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) |
| 213 | | fvun2 7000 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((2nd ‘𝑘) “ (1...𝑗)) × {1}) Fn ((2nd
‘𝑘) “
(1...𝑗)) ∧
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn
((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ∧ ((((2nd
‘𝑘) “
(1...𝑗)) ∩
((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1)))) = ∅ ∧ (𝑀 + 1) ∈ ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))))) → (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘(𝑀 + 1)) =
((((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1))) |
| 214 | 210, 212,
213 | mp3an12 1452 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((2nd ‘𝑘) “ (1...𝑗)) ∩ ((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅ ∧ (𝑀 + 1) ∈ ((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) → (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘(𝑀 + 1)) =
((((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1))) |
| 215 | 191, 207,
214 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘(𝑀 + 1)) =
((((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1))) |
| 216 | 163 | fvconst2 7225 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑀 + 1) ∈ ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) → ((((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)) = 0) |
| 217 | 207, 216 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})‘(𝑀 + 1)) = 0) |
| 218 | 215, 217 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘(𝑀 + 1)) =
0) |
| 219 | 218 | adantlrl 720 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘(𝑀 + 1)) =
0) |
| 220 | 179, 219 | oveq12d 7450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → (((1st ‘𝑘)‘(𝑀 + 1)) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘(𝑀 + 1))) = (0
+ 0)) |
| 221 | | 00id 11437 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 + 0) =
0 |
| 222 | 220, 221 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → (((1st ‘𝑘)‘(𝑀 + 1)) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘(𝑀 + 1))) =
0) |
| 223 | 178, 222 | sylan9eqr 2798 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 = (𝑀 + 1)) → (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛)) =
0) |
| 224 | 172, 173,
175, 223 | fmptapd 7192 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
{〈(𝑀 + 1), 0〉}) =
(𝑛 ∈ (1...(𝑀 + 1)) ↦ (((1st
‘𝑘)‘𝑛) + (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛)))) |
| 225 | 224 | uneq1d 4166 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
{〈(𝑀 + 1), 0〉})
∪ ((((𝑀 + 1) +
1)...𝑁) × {0})) =
((𝑛 ∈ (1...(𝑀 + 1)) ↦ (((1st
‘𝑘)‘𝑛) + (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
((((𝑀 + 1) + 1)...𝑁) ×
{0}))) |
| 226 | 171, 225 | eqtrd 2776 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
(((𝑀 + 1)...𝑁) × {0})) = ((𝑛 ∈ (1...(𝑀 + 1)) ↦ (((1st
‘𝑘)‘𝑛) + (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
((((𝑀 + 1) + 1)...𝑁) ×
{0}))) |
| 227 | | elmapfn 8906 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((1st ‘𝑘) ∈ ((0..^𝐾) ↑m (1...(𝑀 + 1))) → (1st ‘𝑘) Fn (1...(𝑀 + 1))) |
| 228 | 61, 227 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → (1st ‘𝑘) Fn (1...(𝑀 + 1))) |
| 229 | | fnssres 6690 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((1st ‘𝑘) Fn (1...(𝑀 + 1)) ∧ (1...𝑀) ⊆ (1...(𝑀 + 1))) → ((1st ‘𝑘) ↾ (1...𝑀)) Fn (1...𝑀)) |
| 230 | 228, 64, 229 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → ((1st
‘𝑘) ↾
(1...𝑀)) Fn (1...𝑀)) |
| 231 | 230 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((1st ‘𝑘) ↾ (1...𝑀)) Fn (1...𝑀)) |
| 232 | | fnconstg 6795 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (0 ∈
V → (((2nd ‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0}) Fn ((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀))) |
| 233 | 163, 232 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((2nd ‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0}) Fn ((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) |
| 234 | 210, 233 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((2nd ‘𝑘) “ (1...𝑗)) × {1}) Fn ((2nd
‘𝑘) “
(1...𝑗)) ∧
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0}) Fn
((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀))) |
| 235 | | imain 6650 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (Fun
◡(2nd ‘𝑘) → ((2nd
‘𝑘) “
((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = (((2nd ‘𝑘) “ (1...𝑗)) ∩ ((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)))) |
| 236 | 76, 83, 235 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → ((2nd
‘𝑘) “
((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = (((2nd ‘𝑘) “ (1...𝑗)) ∩ ((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)))) |
| 237 | | fzdisj 13592 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 < (𝑗 + 1) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑀)) = ∅) |
| 238 | 185, 237 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑀) → ((1...𝑗) ∩ ((𝑗 + 1)...𝑀)) = ∅) |
| 239 | 238 | imaeq2d 6077 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (0...𝑀) → ((2nd ‘𝑘) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = ((2nd ‘𝑘) “
∅)) |
| 240 | 239, 189 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0...𝑀) → ((2nd ‘𝑘) “ ((1...𝑗) ∩ ((𝑗 + 1)...𝑀))) = ∅) |
| 241 | 236, 240 | sylan9req 2797 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) → (((2nd ‘𝑘) “ (1...𝑗)) ∩ ((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀))) = ∅) |
| 242 | | fnun 6681 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((2nd ‘𝑘) “ (1...𝑗)) × {1}) Fn ((2nd
‘𝑘) “
(1...𝑗)) ∧
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0}) Fn
((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀))) ∧ (((2nd
‘𝑘) “
(1...𝑗)) ∩
((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀))) = ∅) →
((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) Fn (((2nd
‘𝑘) “
(1...𝑗)) ∪
((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)))) |
| 243 | 234, 241,
242 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) → ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) Fn
(((2nd ‘𝑘)
“ (1...𝑗)) ∪
((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)))) |
| 244 | 243 | ad4ant24 754 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) Fn
(((2nd ‘𝑘)
“ (1...𝑗)) ∪
((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)))) |
| 245 | 101 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (((2nd ‘𝑘) “ (1...(𝑀 + 1))) ∖ ((2nd
‘𝑘) “ {(𝑀 + 1)})) = ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)})) |
| 246 | 85 | ad3antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((2nd ‘𝑘) “ ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)})) = (((2nd
‘𝑘) “
(1...(𝑀 + 1))) ∖
((2nd ‘𝑘)
“ {(𝑀 +
1)}))) |
| 247 | 183, 194 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 + 1) ∈ ℕ) |
| 248 | 247, 195 | eleqtrdi 2850 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 + 1) ∈
(ℤ≥‘1)) |
| 249 | | fzsplit2 13590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑗 + 1) ∈
(ℤ≥‘1) ∧ 𝑀 ∈ (ℤ≥‘𝑗)) → (1...𝑀) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) |
| 250 | 248, 199,
249 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑀) → (1...𝑀) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) |
| 251 | 128, 250 | sylan9eq 2796 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)}) = ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) |
| 252 | 251 | imaeq2d 6077 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((2nd ‘𝑘) “ ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)})) = ((2nd
‘𝑘) “
((1...𝑗) ∪ ((𝑗 + 1)...𝑀)))) |
| 253 | 246, 252 | eqtr3d 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (((2nd ‘𝑘) “ (1...(𝑀 + 1))) ∖ ((2nd
‘𝑘) “ {(𝑀 + 1)})) = ((2nd
‘𝑘) “
((1...𝑗) ∪ ((𝑗 + 1)...𝑀)))) |
| 254 | 125 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)}) = (1...𝑀)) |
| 255 | 245, 253,
254 | 3eqtr3rd 2785 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (1...𝑀) = ((2nd ‘𝑘) “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀)))) |
| 256 | | imaundi 6168 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((2nd ‘𝑘) “ ((1...𝑗) ∪ ((𝑗 + 1)...𝑀))) = (((2nd ‘𝑘) “ (1...𝑗)) ∪ ((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀))) |
| 257 | 255, 256 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (1...𝑀) = (((2nd ‘𝑘) “ (1...𝑗)) ∪ ((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)))) |
| 258 | 257 | fneq2d 6661 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀) ↔ ((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) Fn
(((2nd ‘𝑘)
“ (1...𝑗)) ∪
((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀))))) |
| 259 | 244, 258 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀)) |
| 260 | | fzss2 13605 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑀 ∈
(ℤ≥‘𝑗) → (1...𝑗) ⊆ (1...𝑀)) |
| 261 | | resima2 6033 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((1...𝑗) ⊆
(1...𝑀) →
(((2nd ‘𝑘)
↾ (1...𝑀)) “
(1...𝑗)) = ((2nd
‘𝑘) “
(1...𝑗))) |
| 262 | 199, 260,
261 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0...𝑀) → (((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) = ((2nd ‘𝑘) “ (1...𝑗))) |
| 263 | 262 | xpeq1d 5713 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (0...𝑀) → ((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) = (((2nd
‘𝑘) “
(1...𝑗)) ×
{1})) |
| 264 | 183, 196 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 + 1) ∈
(ℤ≥‘1)) |
| 265 | | fzss1 13604 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑗 + 1) ∈
(ℤ≥‘1) → ((𝑗 + 1)...𝑀) ⊆ (1...𝑀)) |
| 266 | | resima2 6033 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑗 + 1)...𝑀) ⊆ (1...𝑀) → (((2nd ‘𝑘) ↾ (1...𝑀)) “ ((𝑗 + 1)...𝑀)) = ((2nd ‘𝑘) “ ((𝑗 + 1)...𝑀))) |
| 267 | 264, 265,
266 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0...𝑀) → (((2nd ‘𝑘) ↾ (1...𝑀)) “ ((𝑗 + 1)...𝑀)) = ((2nd ‘𝑘) “ ((𝑗 + 1)...𝑀))) |
| 268 | 267 | xpeq1d 5713 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (0...𝑀) → ((((2nd ‘𝑘) ↾ (1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}) = (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) |
| 269 | 263, 268 | uneq12d 4168 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ (0...𝑀) → (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0})) = ((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) ×
{0}))) |
| 270 | 269 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0})) = ((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) ×
{0}))) |
| 271 | 270 | fneq1d 6660 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀) ↔ ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀))) |
| 272 | 259, 271 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀)) |
| 273 | | fzfid 14015 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (1...𝑀) ∈ Fin) |
| 274 | | inidm 4226 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1...𝑀) ∩
(1...𝑀)) = (1...𝑀) |
| 275 | | fvres 6924 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ (1...𝑀) → (((1st ‘𝑘) ↾ (1...𝑀))‘𝑛) = ((1st ‘𝑘)‘𝑛)) |
| 276 | 275 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → (((1st ‘𝑘) ↾ (1...𝑀))‘𝑛) = ((1st ‘𝑘)‘𝑛)) |
| 277 | | disjsn 4710 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((1...𝑀) ∩
{(𝑀 + 1)}) = ∅ ↔
¬ (𝑀 + 1) ∈
(1...𝑀)) |
| 278 | 122, 277 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) |
| 279 | 278 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) |
| 280 | 259, 279 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅)) |
| 281 | | fnconstg 6795 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 ∈
V → ({(𝑀 + 1)} ×
{0}) Fn {(𝑀 +
1)}) |
| 282 | 163, 281 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({(𝑀 + 1)} × {0}) Fn {(𝑀 + 1)} |
| 283 | | fvun1 6999 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀) ∧ ({(𝑀 + 1)} × {0}) Fn {(𝑀 + 1)} ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ 𝑛 ∈ (1...𝑀))) → ((((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) ∪ ({(𝑀 + 1)} × {0}))‘𝑛) = (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)) |
| 284 | 282, 283 | mp3an2 1450 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀) ∧ (((1...𝑀) ∩ {(𝑀 + 1)}) = ∅ ∧ 𝑛 ∈ (1...𝑀))) → ((((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) ∪ ({(𝑀 + 1)} × {0}))‘𝑛) = (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)) |
| 285 | 284 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) Fn (1...𝑀) ∧ ((1...𝑀) ∩ {(𝑀 + 1)}) = ∅) ∧ 𝑛 ∈ (1...𝑀)) → ((((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) ∪ ({(𝑀 + 1)} × {0}))‘𝑛) = (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)) |
| 286 | 280, 285 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → ((((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) ∪ ({(𝑀 + 1)} × {0}))‘𝑛) = (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)) |
| 287 | 247 | nnzd 12642 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 + 1) ∈ ℤ) |
| 288 | 183 | nn0cnd 12591 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ) |
| 289 | | pncan1 11688 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑗 ∈ ℂ → ((𝑗 + 1) − 1) = 𝑗) |
| 290 | 288, 289 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ (0...𝑀) → ((𝑗 + 1) − 1) = 𝑗) |
| 291 | 290 | fveq2d 6909 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑗 ∈ (0...𝑀) →
(ℤ≥‘((𝑗 + 1) − 1)) =
(ℤ≥‘𝑗)) |
| 292 | 199, 291 | eleqtrrd 2843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈
(ℤ≥‘((𝑗 + 1) − 1))) |
| 293 | | fzsuc2 13623 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑗 + 1) ∈ ℤ ∧ 𝑀 ∈
(ℤ≥‘((𝑗 + 1) − 1))) → ((𝑗 + 1)...(𝑀 + 1)) = (((𝑗 + 1)...𝑀) ∪ {(𝑀 + 1)})) |
| 294 | 287, 292,
293 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑗 ∈ (0...𝑀) → ((𝑗 + 1)...(𝑀 + 1)) = (((𝑗 + 1)...𝑀) ∪ {(𝑀 + 1)})) |
| 295 | 294 | imaeq2d 6077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 ∈ (0...𝑀) → ((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) = ((2nd ‘𝑘) “ (((𝑗 + 1)...𝑀) ∪ {(𝑀 + 1)}))) |
| 296 | | imaundi 6168 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((2nd ‘𝑘) “ (((𝑗 + 1)...𝑀) ∪ {(𝑀 + 1)})) = (((2nd ‘𝑘) “ ((𝑗 + 1)...𝑀)) ∪ ((2nd ‘𝑘) “ {(𝑀 + 1)})) |
| 297 | 295, 296 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (0...𝑀) → ((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) = (((2nd ‘𝑘) “ ((𝑗 + 1)...𝑀)) ∪ ((2nd ‘𝑘) “ {(𝑀 + 1)}))) |
| 298 | 297 | xpeq1d 5713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (0...𝑀) → (((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = ((((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) ∪ ((2nd ‘𝑘) “ {(𝑀 + 1)})) × {0})) |
| 299 | | xpundir 5754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((((2nd ‘𝑘) “ ((𝑗 + 1)...𝑀)) ∪ ((2nd ‘𝑘) “ {(𝑀 + 1)})) × {0}) = ((((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0}) ∪ (((2nd
‘𝑘) “ {(𝑀 + 1)}) ×
{0})) |
| 300 | 298, 299 | eqtrdi 2792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0...𝑀) → (((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = ((((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0}) ∪ (((2nd
‘𝑘) “ {(𝑀 + 1)}) ×
{0}))) |
| 301 | 300 | uneq2d 4167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (0...𝑀) → ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0})) =
((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0}) ∪ (((2nd
‘𝑘) “ {(𝑀 + 1)}) ×
{0})))) |
| 302 | | unass 4171 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) ∪ (((2nd
‘𝑘) “ {(𝑀 + 1)}) × {0})) =
((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0}) ∪ (((2nd
‘𝑘) “ {(𝑀 + 1)}) ×
{0}))) |
| 303 | 301, 302 | eqtr4di 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (0...𝑀) → ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0})) =
(((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) ∪ (((2nd
‘𝑘) “ {(𝑀 + 1)}) ×
{0}))) |
| 304 | 303 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ 𝑗 ∈ (0...𝑀)) → ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0})) =
(((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) ∪ (((2nd
‘𝑘) “ {(𝑀 + 1)}) ×
{0}))) |
| 305 | 98 | xpeq1d 5713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) → ({((2nd
‘𝑘)‘(𝑀 + 1))} × {0}) =
(((2nd ‘𝑘)
“ {(𝑀 + 1)}) ×
{0})) |
| 306 | 305 | uneq2d 4167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) → (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) ∪
({((2nd ‘𝑘)‘(𝑀 + 1))} × {0})) = (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) ∪
(((2nd ‘𝑘)
“ {(𝑀 + 1)}) ×
{0}))) |
| 307 | 306 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ 𝑗 ∈ (0...𝑀)) → (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) ∪
({((2nd ‘𝑘)‘(𝑀 + 1))} × {0})) = (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) ∪
(((2nd ‘𝑘)
“ {(𝑀 + 1)}) ×
{0}))) |
| 308 | 304, 307 | eqtr4d 2779 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ 𝑗 ∈ (0...𝑀)) → ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0})) =
(((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) ∪ ({((2nd
‘𝑘)‘(𝑀 + 1))} ×
{0}))) |
| 309 | 99 | xpeq1d 5713 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1) → ({((2nd ‘𝑘)‘(𝑀 + 1))} × {0}) = ({(𝑀 + 1)} × {0})) |
| 310 | 309 | uneq2d 4167 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1) → (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) ∪
({((2nd ‘𝑘)‘(𝑀 + 1))} × {0})) = (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0})) ∪ ({(𝑀 + 1)} ×
{0}))) |
| 311 | 308, 310 | sylan9eq 2796 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ 𝑗 ∈ (0...𝑀)) ∧ ((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0})) =
(((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) ∪ ({(𝑀 + 1)} × {0}))) |
| 312 | 311 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0})) =
(((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) ∪ ({(𝑀 + 1)} × {0}))) |
| 313 | 312 | fveq1d 6907 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛) =
((((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) ∪ ({(𝑀 + 1)} × {0}))‘𝑛)) |
| 314 | 313 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛) =
((((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...𝑀)) × {0})) ∪ ({(𝑀 + 1)} × {0}))‘𝑛)) |
| 315 | 269 | fveq1d 6907 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (0...𝑀) → ((((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛) = (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)) |
| 316 | 315 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → ((((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛) = (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛)) |
| 317 | 286, 314,
316 | 3eqtr4rd 2787 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...𝑀)) → ((((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))‘𝑛) = (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛)) |
| 318 | 231, 272,
273, 273, 274, 276, 317 | offval 7707 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → (((1st ‘𝑘) ↾ (1...𝑀)) ∘f + (((((2nd
‘𝑘) ↾
(1...𝑀)) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑘) ↾ (1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) = (𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛)))) |
| 319 | 318 | uneq1d 4166 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ 𝑗 ∈ (0...𝑀)) → ((((1st ‘𝑘) ↾ (1...𝑀)) ∘f + (((((2nd
‘𝑘) ↾
(1...𝑀)) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑘) ↾ (1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = ((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
(((𝑀 + 1)...𝑁) ×
{0}))) |
| 320 | 319 | adantlrl 720 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → ((((1st ‘𝑘) ↾ (1...𝑀)) ∘f + (((((2nd
‘𝑘) ↾
(1...𝑀)) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑘) ↾ (1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = ((𝑛 ∈ (1...𝑀) ↦ (((1st ‘𝑘)‘𝑛) + (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
(((𝑀 + 1)...𝑁) ×
{0}))) |
| 321 | 228 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) → (1st ‘𝑘) Fn (1...(𝑀 + 1))) |
| 322 | 210, 212 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((2nd ‘𝑘) “ (1...𝑗)) × {1}) Fn ((2nd
‘𝑘) “
(1...𝑗)) ∧
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn
((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1)))) |
| 323 | 181, 190 | sylan9req 2797 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) → (((2nd ‘𝑘) “ (1...𝑗)) ∩ ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) = ∅) |
| 324 | | fnun 6681 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((2nd ‘𝑘) “ (1...𝑗)) × {1}) Fn ((2nd
‘𝑘) “
(1...𝑗)) ∧
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0}) Fn
((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1)))) ∧ (((2nd
‘𝑘) “
(1...𝑗)) ∩
((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1)))) = ∅) →
((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (((2nd
‘𝑘) “
(1...𝑗)) ∪
((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))))) |
| 325 | 322, 323,
324 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) → ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn
(((2nd ‘𝑘)
“ (1...𝑗)) ∪
((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))))) |
| 326 | | peano2uz 12944 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑀 ∈
(ℤ≥‘𝑗) → (𝑀 + 1) ∈
(ℤ≥‘𝑗)) |
| 327 | 199, 326 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ (0...𝑀) → (𝑀 + 1) ∈
(ℤ≥‘𝑗)) |
| 328 | | fzsplit2 13590 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑗 + 1) ∈
(ℤ≥‘1) ∧ (𝑀 + 1) ∈
(ℤ≥‘𝑗)) → (1...(𝑀 + 1)) = ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1)))) |
| 329 | 264, 327,
328 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0...𝑀) → (1...(𝑀 + 1)) = ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1)))) |
| 330 | 329 | imaeq2d 6077 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ (0...𝑀) → ((2nd ‘𝑘) “ (1...(𝑀 + 1))) = ((2nd
‘𝑘) “
((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1))))) |
| 331 | | imaundi 6168 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((2nd ‘𝑘) “ ((1...𝑗) ∪ ((𝑗 + 1)...(𝑀 + 1)))) = (((2nd ‘𝑘) “ (1...𝑗)) ∪ ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 332 | 330, 331 | eqtr2di 2793 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ (0...𝑀) → (((2nd ‘𝑘) “ (1...𝑗)) ∪ ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) = ((2nd ‘𝑘) “ (1...(𝑀 + 1)))) |
| 333 | 332, 89 | sylan9eqr 2798 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) → (((2nd ‘𝑘) “ (1...𝑗)) ∪ ((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) = (1...(𝑀 + 1))) |
| 334 | 333 | fneq2d 6661 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) → (((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn
(((2nd ‘𝑘)
“ (1...𝑗)) ∪
((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1)))) ↔
((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn (1...(𝑀 + 1)))) |
| 335 | 325, 334 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) → ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0})) Fn
(1...(𝑀 +
1))) |
| 336 | | fzfid 14015 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) → (1...(𝑀 + 1)) ∈ Fin) |
| 337 | | inidm 4226 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1...(𝑀 + 1)) ∩
(1...(𝑀 + 1))) =
(1...(𝑀 +
1)) |
| 338 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...(𝑀 + 1))) → ((1st ‘𝑘)‘𝑛) = ((1st ‘𝑘)‘𝑛)) |
| 339 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑛 ∈ (1...(𝑀 + 1))) → (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛) =
(((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))‘𝑛)) |
| 340 | 321, 335,
336, 336, 337, 338, 339 | offval 7707 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) → ((1st ‘𝑘) ∘f +
((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) = (𝑛 ∈ (1...(𝑀 + 1)) ↦ (((1st
‘𝑘)‘𝑛) + (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛)))) |
| 341 | 340 | uneq1d 4166 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∧ 𝑗 ∈ (0...𝑀)) → (((1st ‘𝑘) ∘f +
((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) = ((𝑛 ∈ (1...(𝑀 + 1)) ↦ (((1st
‘𝑘)‘𝑛) + (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
((((𝑀 + 1) + 1)...𝑁) ×
{0}))) |
| 342 | 341 | ad4ant24 754 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → (((1st ‘𝑘) ∘f +
((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) = ((𝑛 ∈ (1...(𝑀 + 1)) ↦ (((1st
‘𝑘)‘𝑛) + (((((2nd
‘𝑘) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑘)
“ ((𝑗 + 1)...(𝑀 + 1))) ×
{0}))‘𝑛))) ∪
((((𝑀 + 1) + 1)...𝑁) ×
{0}))) |
| 343 | 226, 320,
342 | 3eqtr4rd 2787 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → (((1st ‘𝑘) ∘f +
((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) = ((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0}))) |
| 344 | 343 | csbeq1d 3902 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 345 | 344 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 346 | 345 | rexbidva 3176 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) → (∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 347 | 346 | ralbidv 3177 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 348 | 347 | biimpd 229 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 → ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 349 | 348 | impr 454 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) ∧ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) → ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 350 | 139, 349 | sylan2b 594 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) → ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 351 | | 1st2nd2 8054 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) → 𝑘 = 〈(1st ‘𝑘), (2nd ‘𝑘)〉) |
| 352 | 351 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) → 𝑘 = 〈(1st ‘𝑘), (2nd ‘𝑘)〉) |
| 353 | | fnsnsplit 7205 |
. . . . . . . . . . . . . . . 16
⊢
(((1st ‘𝑘) Fn (1...(𝑀 + 1)) ∧ (𝑀 + 1) ∈ (1...(𝑀 + 1))) → (1st ‘𝑘) = (((1st
‘𝑘) ↾
((1...(𝑀 + 1)) ∖
{(𝑀 + 1)})) ∪
{〈(𝑀 + 1),
((1st ‘𝑘)‘(𝑀 + 1))〉})) |
| 354 | 228, 96, 353 | syl2anr 597 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) → (1st
‘𝑘) =
(((1st ‘𝑘)
↾ ((1...(𝑀 + 1))
∖ {(𝑀 + 1)})) ∪
{〈(𝑀 + 1),
((1st ‘𝑘)‘(𝑀 + 1))〉})) |
| 355 | 354 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((1st
‘𝑘)‘(𝑀 + 1)) = 0) →
(1st ‘𝑘) =
(((1st ‘𝑘)
↾ ((1...(𝑀 + 1))
∖ {(𝑀 + 1)})) ∪
{〈(𝑀 + 1),
((1st ‘𝑘)‘(𝑀 + 1))〉})) |
| 356 | 125 | reseq2d 5996 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((1st
‘𝑘) ↾
((1...(𝑀 + 1)) ∖
{(𝑀 + 1)})) =
((1st ‘𝑘)
↾ (1...𝑀))) |
| 357 | 356 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) → ((1st
‘𝑘) ↾
((1...(𝑀 + 1)) ∖
{(𝑀 + 1)})) =
((1st ‘𝑘)
↾ (1...𝑀))) |
| 358 | | opeq2 4873 |
. . . . . . . . . . . . . . . 16
⊢
(((1st ‘𝑘)‘(𝑀 + 1)) = 0 → 〈(𝑀 + 1), ((1st ‘𝑘)‘(𝑀 + 1))〉 = 〈(𝑀 + 1), 0〉) |
| 359 | 358 | sneqd 4637 |
. . . . . . . . . . . . . . 15
⊢
(((1st ‘𝑘)‘(𝑀 + 1)) = 0 → {〈(𝑀 + 1), ((1st ‘𝑘)‘(𝑀 + 1))〉} = {〈(𝑀 + 1), 0〉}) |
| 360 | | uneq12 4162 |
. . . . . . . . . . . . . . 15
⊢
((((1st ‘𝑘) ↾ ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)})) = ((1st ‘𝑘) ↾ (1...𝑀)) ∧ {〈(𝑀 + 1), ((1st ‘𝑘)‘(𝑀 + 1))〉} = {〈(𝑀 + 1), 0〉}) → (((1st
‘𝑘) ↾
((1...(𝑀 + 1)) ∖
{(𝑀 + 1)})) ∪
{〈(𝑀 + 1),
((1st ‘𝑘)‘(𝑀 + 1))〉}) = (((1st
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1),
0〉})) |
| 361 | 357, 359,
360 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((1st
‘𝑘)‘(𝑀 + 1)) = 0) →
(((1st ‘𝑘)
↾ ((1...(𝑀 + 1))
∖ {(𝑀 + 1)})) ∪
{〈(𝑀 + 1),
((1st ‘𝑘)‘(𝑀 + 1))〉}) = (((1st
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1),
0〉})) |
| 362 | 355, 361 | eqtrd 2776 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((1st
‘𝑘)‘(𝑀 + 1)) = 0) →
(1st ‘𝑘) =
(((1st ‘𝑘)
↾ (1...𝑀)) ∪
{〈(𝑀 + 1),
0〉})) |
| 363 | 362 | adantrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) → (1st ‘𝑘) = (((1st
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1),
0〉})) |
| 364 | | fnsnsplit 7205 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘𝑘) Fn (1...(𝑀 + 1)) ∧ (𝑀 + 1) ∈ (1...(𝑀 + 1))) → (2nd ‘𝑘) = (((2nd
‘𝑘) ↾
((1...(𝑀 + 1)) ∖
{(𝑀 + 1)})) ∪
{〈(𝑀 + 1),
((2nd ‘𝑘)‘(𝑀 + 1))〉})) |
| 365 | 92, 96, 364 | syl2anr 597 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) → (2nd
‘𝑘) =
(((2nd ‘𝑘)
↾ ((1...(𝑀 + 1))
∖ {(𝑀 + 1)})) ∪
{〈(𝑀 + 1),
((2nd ‘𝑘)‘(𝑀 + 1))〉})) |
| 366 | 365 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → (2nd ‘𝑘) = (((2nd
‘𝑘) ↾
((1...(𝑀 + 1)) ∖
{(𝑀 + 1)})) ∪
{〈(𝑀 + 1),
((2nd ‘𝑘)‘(𝑀 + 1))〉})) |
| 367 | 125 | reseq2d 5996 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((2nd
‘𝑘) ↾
((1...(𝑀 + 1)) ∖
{(𝑀 + 1)})) =
((2nd ‘𝑘)
↾ (1...𝑀))) |
| 368 | 367 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) → ((2nd
‘𝑘) ↾
((1...(𝑀 + 1)) ∖
{(𝑀 + 1)})) =
((2nd ‘𝑘)
↾ (1...𝑀))) |
| 369 | | opeq2 4873 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1) → 〈(𝑀 + 1), ((2nd ‘𝑘)‘(𝑀 + 1))〉 = 〈(𝑀 + 1), (𝑀 + 1)〉) |
| 370 | 369 | sneqd 4637 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1) → {〈(𝑀 + 1), ((2nd ‘𝑘)‘(𝑀 + 1))〉} = {〈(𝑀 + 1), (𝑀 + 1)〉}) |
| 371 | | uneq12 4162 |
. . . . . . . . . . . . . . 15
⊢
((((2nd ‘𝑘) ↾ ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)})) = ((2nd ‘𝑘) ↾ (1...𝑀)) ∧ {〈(𝑀 + 1), ((2nd ‘𝑘)‘(𝑀 + 1))〉} = {〈(𝑀 + 1), (𝑀 + 1)〉}) → (((2nd
‘𝑘) ↾
((1...(𝑀 + 1)) ∖
{(𝑀 + 1)})) ∪
{〈(𝑀 + 1),
((2nd ‘𝑘)‘(𝑀 + 1))〉}) = (((2nd
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})) |
| 372 | 368, 370,
371 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → (((2nd ‘𝑘) ↾ ((1...(𝑀 + 1)) ∖ {(𝑀 + 1)})) ∪ {〈(𝑀 + 1), ((2nd
‘𝑘)‘(𝑀 + 1))〉}) =
(((2nd ‘𝑘)
↾ (1...𝑀)) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})) |
| 373 | 366, 372 | eqtrd 2776 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → (2nd ‘𝑘) = (((2nd
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})) |
| 374 | 373 | adantrl 716 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) → (2nd ‘𝑘) = (((2nd
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})) |
| 375 | 363, 374 | opeq12d 4880 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) → 〈(1st
‘𝑘), (2nd
‘𝑘)〉 =
〈(((1st ‘𝑘) ↾ (1...𝑀)) ∪ {〈(𝑀 + 1), 0〉}), (((2nd
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1), (𝑀 +
1)〉})〉) |
| 376 | 352, 375 | eqtrd 2776 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (((1st
‘𝑘)‘(𝑀 + 1)) = 0 ∧
((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) → 𝑘 = 〈(((1st ‘𝑘) ↾ (1...𝑀)) ∪ {〈(𝑀 + 1), 0〉}), (((2nd
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1), (𝑀 +
1)〉})〉) |
| 377 | 376 | 3adantr1 1169 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) → 𝑘 = 〈(((1st ‘𝑘) ↾ (1...𝑀)) ∪ {〈(𝑀 + 1), 0〉}), (((2nd
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1), (𝑀 +
1)〉})〉) |
| 378 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1st ‘𝑘) ∈ V |
| 379 | 378 | resex 6046 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑘) ↾ (1...𝑀)) ∈ V |
| 380 | 379, 132 | op1std 8025 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
(1st ‘𝑡) =
((1st ‘𝑘)
↾ (1...𝑀))) |
| 381 | 379, 132 | op2ndd 8026 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
(2nd ‘𝑡) =
((2nd ‘𝑘)
↾ (1...𝑀))) |
| 382 | 381 | imaeq1d 6076 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
((2nd ‘𝑡)
“ (1...𝑗)) =
(((2nd ‘𝑘)
↾ (1...𝑀)) “
(1...𝑗))) |
| 383 | 382 | xpeq1d 5713 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
(((2nd ‘𝑡)
“ (1...𝑗)) ×
{1}) = ((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1})) |
| 384 | 381 | imaeq1d 6076 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
((2nd ‘𝑡)
“ ((𝑗 + 1)...𝑀)) = (((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀))) |
| 385 | 384 | xpeq1d 5713 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
(((2nd ‘𝑡)
“ ((𝑗 + 1)...𝑀)) × {0}) =
((((2nd ‘𝑘) ↾ (1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0})) |
| 386 | 383, 385 | uneq12d 4168 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0})) = (((((2nd
‘𝑘) ↾
(1...𝑀)) “ (1...𝑗)) × {1}) ∪
((((2nd ‘𝑘) ↾ (1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) |
| 387 | 380, 386 | oveq12d 7450 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
((1st ‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) = (((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0})))) |
| 388 | 387 | uneq1d 4166 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
(((1st ‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) = ((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0}))) |
| 389 | 388 | csbeq1d 3902 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
⦋(((1st ‘𝑡) ∘f + ((((2nd
‘𝑡) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑡)
“ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 390 | 389 | eqeq2d 2747 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
(𝑖 =
⦋(((1st ‘𝑡) ∘f + ((((2nd
‘𝑡) “
(1...𝑗)) × {1}) ∪
(((2nd ‘𝑡)
“ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 391 | 390 | rexbidv 3178 |
. . . . . . . . . . . 12
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
(∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 392 | 391 | ralbidv 3177 |
. . . . . . . . . . 11
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
(∀𝑖 ∈
(0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 393 | 380 | uneq1d 4166 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
((1st ‘𝑡)
∪ {〈(𝑀 + 1),
0〉}) = (((1st ‘𝑘) ↾ (1...𝑀)) ∪ {〈(𝑀 + 1), 0〉})) |
| 394 | 381 | uneq1d 4166 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉}) =
(((2nd ‘𝑘)
↾ (1...𝑀)) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})) |
| 395 | 393, 394 | opeq12d 4880 |
. . . . . . . . . . . 12
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}), ((2nd
‘𝑡) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})〉 =
〈(((1st ‘𝑘) ↾ (1...𝑀)) ∪ {〈(𝑀 + 1), 0〉}), (((2nd
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1), (𝑀 +
1)〉})〉) |
| 396 | 395 | eqeq2d 2747 |
. . . . . . . . . . 11
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
(𝑘 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
↔ 𝑘 =
〈(((1st ‘𝑘) ↾ (1...𝑀)) ∪ {〈(𝑀 + 1), 0〉}), (((2nd
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1), (𝑀 +
1)〉})〉)) |
| 397 | 392, 396 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑡 = 〈((1st
‘𝑘) ↾
(1...𝑀)), ((2nd
‘𝑘) ↾
(1...𝑀))〉 →
((∀𝑖 ∈
(0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ 𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
↔ (∀𝑖 ∈
(0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ 𝑘 = 〈(((1st ‘𝑘) ↾ (1...𝑀)) ∪ {〈(𝑀 + 1), 0〉}), (((2nd
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1), (𝑀 +
1)〉})〉))) |
| 398 | 397 | rspcev 3621 |
. . . . . . . . 9
⊢
((〈((1st ‘𝑘) ↾ (1...𝑀)), ((2nd ‘𝑘) ↾ (1...𝑀))〉 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋((((1st
‘𝑘) ↾
(1...𝑀))
∘f + (((((2nd ‘𝑘) ↾ (1...𝑀)) “ (1...𝑗)) × {1}) ∪ ((((2nd
‘𝑘) ↾
(1...𝑀)) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ 𝑘 = 〈(((1st ‘𝑘) ↾ (1...𝑀)) ∪ {〈(𝑀 + 1), 0〉}), (((2nd
‘𝑘) ↾
(1...𝑀)) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})〉)) →
∃𝑡 ∈
(((0..^𝐾)
↑m (1...𝑀))
× {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})(∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ 𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉)) |
| 399 | 137, 350,
377, 398 | syl12anc 836 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) ∧ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) → ∃𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})(∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ 𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉)) |
| 400 | 399 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) → ((∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ∃𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})(∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ 𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉))) |
| 401 | | elrabi 3686 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} → 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) |
| 402 | | elrabi 3686 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} → 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) |
| 403 | 401, 402 | anim12i 613 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∧ 𝑛 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}) → (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}))) |
| 404 | | eqtr2 2760 |
. . . . . . . . . . . 12
⊢ ((𝑘 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
𝑘 = 〈((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑛)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
→ 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}), ((2nd
‘𝑡) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})〉 =
〈((1st ‘𝑛) ∪ {〈(𝑀 + 1), 0〉}), ((2nd
‘𝑛) ∪
{〈(𝑀 + 1), (𝑀 +
1)〉})〉) |
| 405 | 22, 24 | opth 5480 |
. . . . . . . . . . . . 13
⊢
(〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}), ((2nd
‘𝑡) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})〉 =
〈((1st ‘𝑛) ∪ {〈(𝑀 + 1), 0〉}), ((2nd
‘𝑛) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})〉 ↔
(((1st ‘𝑡)
∪ {〈(𝑀 + 1),
0〉}) = ((1st ‘𝑛) ∪ {〈(𝑀 + 1), 0〉}) ∧ ((2nd
‘𝑡) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}))) |
| 406 | | difeq1 4118 |
. . . . . . . . . . . . . . 15
⊢
(((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}) = ((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉})
→ (((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}) ∖ {〈(𝑀 + 1), 0〉}) =
(((1st ‘𝑛)
∪ {〈(𝑀 + 1),
0〉}) ∖ {〈(𝑀
+ 1), 0〉})) |
| 407 | | difun2 4480 |
. . . . . . . . . . . . . . 15
⊢
(((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}) ∖ {〈(𝑀 + 1), 0〉}) =
((1st ‘𝑡)
∖ {〈(𝑀 + 1),
0〉}) |
| 408 | | difun2 4480 |
. . . . . . . . . . . . . . 15
⊢
(((1st ‘𝑛) ∪ {〈(𝑀 + 1), 0〉}) ∖ {〈(𝑀 + 1), 0〉}) =
((1st ‘𝑛)
∖ {〈(𝑀 + 1),
0〉}) |
| 409 | 406, 407,
408 | 3eqtr3g 2799 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}) = ((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉})
→ ((1st ‘𝑡) ∖ {〈(𝑀 + 1), 0〉}) = ((1st
‘𝑛) ∖
{〈(𝑀 + 1),
0〉})) |
| 410 | | difeq1 4118 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) →
(((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉}) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉}) =
(((2nd ‘𝑛)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉}) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉})) |
| 411 | | difun2 4480 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∖ {〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑡) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉}) |
| 412 | | difun2 4480 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘𝑛) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) ∖ {〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉}) |
| 413 | 410, 411,
412 | 3eqtr3g 2799 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉}) →
((2nd ‘𝑡)
∖ {〈(𝑀 + 1),
(𝑀 + 1)〉}) =
((2nd ‘𝑛)
∖ {〈(𝑀 + 1),
(𝑀 +
1)〉})) |
| 414 | 409, 413 | anim12i 613 |
. . . . . . . . . . . . 13
⊢
((((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}) = ((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉})
∧ ((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})) →
(((1st ‘𝑡)
∖ {〈(𝑀 + 1),
0〉}) = ((1st ‘𝑛) ∖ {〈(𝑀 + 1), 0〉}) ∧ ((2nd
‘𝑡) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉}))) |
| 415 | 405, 414 | sylbi 217 |
. . . . . . . . . . . 12
⊢
(〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}), ((2nd
‘𝑡) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})〉 =
〈((1st ‘𝑛) ∪ {〈(𝑀 + 1), 0〉}), ((2nd
‘𝑛) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})〉 →
(((1st ‘𝑡)
∖ {〈(𝑀 + 1),
0〉}) = ((1st ‘𝑛) ∖ {〈(𝑀 + 1), 0〉}) ∧ ((2nd
‘𝑡) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉}))) |
| 416 | 404, 415 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑘 = 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
𝑘 = 〈((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑛)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
→ (((1st ‘𝑡) ∖ {〈(𝑀 + 1), 0〉}) = ((1st
‘𝑛) ∖
{〈(𝑀 + 1), 0〉})
∧ ((2nd ‘𝑡) ∖ {〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉}))) |
| 417 | | elmapfn 8906 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1st ‘𝑡) ∈ ((0..^𝐾) ↑m (1...𝑀)) → (1st ‘𝑡) Fn (1...𝑀)) |
| 418 | | fnop 6676 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘𝑡) Fn (1...𝑀) ∧ 〈(𝑀 + 1), 0〉 ∈ (1st
‘𝑡)) → (𝑀 + 1) ∈ (1...𝑀)) |
| 419 | 418 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1st ‘𝑡) Fn (1...𝑀) → (〈(𝑀 + 1), 0〉 ∈ (1st
‘𝑡) → (𝑀 + 1) ∈ (1...𝑀))) |
| 420 | 9, 417, 419 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (〈(𝑀 + 1), 0〉 ∈ (1st
‘𝑡) → (𝑀 + 1) ∈ (1...𝑀))) |
| 421 | 420, 122 | nsyli 157 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (𝜑 → ¬ 〈(𝑀 + 1), 0〉 ∈ (1st
‘𝑡))) |
| 422 | 421 | impcom 407 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → ¬ 〈(𝑀 + 1), 0〉 ∈ (1st
‘𝑡)) |
| 423 | | difsn 4797 |
. . . . . . . . . . . . . . . 16
⊢ (¬
〈(𝑀 + 1), 0〉
∈ (1st ‘𝑡) → ((1st ‘𝑡) ∖ {〈(𝑀 + 1), 0〉}) =
(1st ‘𝑡)) |
| 424 | 422, 423 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → ((1st ‘𝑡) ∖ {〈(𝑀 + 1), 0〉}) =
(1st ‘𝑡)) |
| 425 | | xp1st 8047 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (1st ‘𝑛) ∈ ((0..^𝐾) ↑m (1...𝑀))) |
| 426 | | elmapfn 8906 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1st ‘𝑛) ∈ ((0..^𝐾) ↑m (1...𝑀)) → (1st ‘𝑛) Fn (1...𝑀)) |
| 427 | | fnop 6676 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘𝑛) Fn (1...𝑀) ∧ 〈(𝑀 + 1), 0〉 ∈ (1st
‘𝑛)) → (𝑀 + 1) ∈ (1...𝑀)) |
| 428 | 427 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1st ‘𝑛) Fn (1...𝑀) → (〈(𝑀 + 1), 0〉 ∈ (1st
‘𝑛) → (𝑀 + 1) ∈ (1...𝑀))) |
| 429 | 425, 426,
428 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (〈(𝑀 + 1), 0〉 ∈ (1st
‘𝑛) → (𝑀 + 1) ∈ (1...𝑀))) |
| 430 | 429, 122 | nsyli 157 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (𝜑 → ¬ 〈(𝑀 + 1), 0〉 ∈ (1st
‘𝑛))) |
| 431 | 430 | impcom 407 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → ¬ 〈(𝑀 + 1), 0〉 ∈ (1st
‘𝑛)) |
| 432 | | difsn 4797 |
. . . . . . . . . . . . . . . 16
⊢ (¬
〈(𝑀 + 1), 0〉
∈ (1st ‘𝑛) → ((1st ‘𝑛) ∖ {〈(𝑀 + 1), 0〉}) =
(1st ‘𝑛)) |
| 433 | 431, 432 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → ((1st ‘𝑛) ∖ {〈(𝑀 + 1), 0〉}) =
(1st ‘𝑛)) |
| 434 | 424, 433 | eqeqan12d 2750 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) ∧ (𝜑 ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}))) → (((1st ‘𝑡) ∖ {〈(𝑀 + 1), 0〉}) =
((1st ‘𝑛)
∖ {〈(𝑀 + 1),
0〉}) ↔ (1st ‘𝑡) = (1st ‘𝑛))) |
| 435 | 434 | anandis 678 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}))) → (((1st ‘𝑡) ∖ {〈(𝑀 + 1), 0〉}) =
((1st ‘𝑛)
∖ {〈(𝑀 + 1),
0〉}) ↔ (1st ‘𝑡) = (1st ‘𝑛))) |
| 436 | | f1ofn 6848 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑡):(1...𝑀)–1-1-onto→(1...𝑀) → (2nd ‘𝑡) Fn (1...𝑀)) |
| 437 | | fnop 6676 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘𝑡) Fn (1...𝑀) ∧ 〈(𝑀 + 1), (𝑀 + 1)〉 ∈ (2nd
‘𝑡)) → (𝑀 + 1) ∈ (1...𝑀)) |
| 438 | 437 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑡) Fn (1...𝑀) → (〈(𝑀 + 1), (𝑀 + 1)〉 ∈ (2nd
‘𝑡) → (𝑀 + 1) ∈ (1...𝑀))) |
| 439 | 17, 436, 438 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (〈(𝑀 + 1), (𝑀 + 1)〉 ∈ (2nd
‘𝑡) → (𝑀 + 1) ∈ (1...𝑀))) |
| 440 | 439, 122 | nsyli 157 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (𝜑 → ¬ 〈(𝑀 + 1), (𝑀 + 1)〉 ∈ (2nd
‘𝑡))) |
| 441 | 440 | impcom 407 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → ¬ 〈(𝑀 + 1), (𝑀 + 1)〉 ∈ (2nd
‘𝑡)) |
| 442 | | difsn 4797 |
. . . . . . . . . . . . . . . 16
⊢ (¬
〈(𝑀 + 1), (𝑀 + 1)〉 ∈
(2nd ‘𝑡)
→ ((2nd ‘𝑡) ∖ {〈(𝑀 + 1), (𝑀 + 1)〉}) = (2nd ‘𝑡)) |
| 443 | 441, 442 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → ((2nd ‘𝑡) ∖ {〈(𝑀 + 1), (𝑀 + 1)〉}) = (2nd ‘𝑡)) |
| 444 | | xp2nd 8048 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (2nd ‘𝑛) ∈ {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) |
| 445 | | fvex 6918 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(2nd ‘𝑛) ∈ V |
| 446 | | f1oeq1 6835 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = (2nd ‘𝑛) → (𝑓:(1...𝑀)–1-1-onto→(1...𝑀) ↔ (2nd ‘𝑛):(1...𝑀)–1-1-onto→(1...𝑀))) |
| 447 | 445, 446 | elab 3678 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑛) ∈ {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)} ↔ (2nd ‘𝑛):(1...𝑀)–1-1-onto→(1...𝑀)) |
| 448 | 444, 447 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (2nd ‘𝑛):(1...𝑀)–1-1-onto→(1...𝑀)) |
| 449 | | f1ofn 6848 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑛):(1...𝑀)–1-1-onto→(1...𝑀) → (2nd ‘𝑛) Fn (1...𝑀)) |
| 450 | | fnop 6676 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘𝑛) Fn (1...𝑀) ∧ 〈(𝑀 + 1), (𝑀 + 1)〉 ∈ (2nd
‘𝑛)) → (𝑀 + 1) ∈ (1...𝑀)) |
| 451 | 450 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑛) Fn (1...𝑀) → (〈(𝑀 + 1), (𝑀 + 1)〉 ∈ (2nd
‘𝑛) → (𝑀 + 1) ∈ (1...𝑀))) |
| 452 | 448, 449,
451 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (〈(𝑀 + 1), (𝑀 + 1)〉 ∈ (2nd
‘𝑛) → (𝑀 + 1) ∈ (1...𝑀))) |
| 453 | 452, 122 | nsyli 157 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) → (𝜑 → ¬ 〈(𝑀 + 1), (𝑀 + 1)〉 ∈ (2nd
‘𝑛))) |
| 454 | 453 | impcom 407 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → ¬ 〈(𝑀 + 1), (𝑀 + 1)〉 ∈ (2nd
‘𝑛)) |
| 455 | | difsn 4797 |
. . . . . . . . . . . . . . . 16
⊢ (¬
〈(𝑀 + 1), (𝑀 + 1)〉 ∈
(2nd ‘𝑛)
→ ((2nd ‘𝑛) ∖ {〈(𝑀 + 1), (𝑀 + 1)〉}) = (2nd ‘𝑛)) |
| 456 | 454, 455 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → ((2nd ‘𝑛) ∖ {〈(𝑀 + 1), (𝑀 + 1)〉}) = (2nd ‘𝑛)) |
| 457 | 443, 456 | eqeqan12d 2750 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) ∧ (𝜑 ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}))) → (((2nd ‘𝑡) ∖ {〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉}) ↔
(2nd ‘𝑡) =
(2nd ‘𝑛))) |
| 458 | 457 | anandis 678 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}))) → (((2nd ‘𝑡) ∖ {〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉}) ↔
(2nd ‘𝑡) =
(2nd ‘𝑛))) |
| 459 | 435, 458 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}))) → ((((1st ‘𝑡) ∖ {〈(𝑀 + 1), 0〉}) =
((1st ‘𝑛)
∖ {〈(𝑀 + 1),
0〉}) ∧ ((2nd ‘𝑡) ∖ {〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉})) ↔
((1st ‘𝑡)
= (1st ‘𝑛)
∧ (2nd ‘𝑡) = (2nd ‘𝑛)))) |
| 460 | | xpopth 8056 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})) → (((1st ‘𝑡) = (1st ‘𝑛) ∧ (2nd
‘𝑡) = (2nd
‘𝑛)) ↔ 𝑡 = 𝑛)) |
| 461 | 460 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}))) → (((1st ‘𝑡) = (1st ‘𝑛) ∧ (2nd
‘𝑡) = (2nd
‘𝑛)) ↔ 𝑡 = 𝑛)) |
| 462 | 459, 461 | bitrd 279 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}))) → ((((1st ‘𝑡) ∖ {〈(𝑀 + 1), 0〉}) =
((1st ‘𝑛)
∖ {〈(𝑀 + 1),
0〉}) ∧ ((2nd ‘𝑡) ∖ {〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∖
{〈(𝑀 + 1), (𝑀 + 1)〉})) ↔ 𝑡 = 𝑛)) |
| 463 | 416, 462 | imbitrid 244 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∧ 𝑛 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}))) → ((𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
𝑘 = 〈((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑛)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
→ 𝑡 = 𝑛)) |
| 464 | 403, 463 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∧ 𝑛 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵})) → ((𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
𝑘 = 〈((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑛)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
→ 𝑡 = 𝑛)) |
| 465 | 464 | ralrimivva 3201 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}∀𝑛 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ((𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
𝑘 = 〈((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑛)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
→ 𝑡 = 𝑛)) |
| 466 | 465 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) → ∀𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}∀𝑛 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ((𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
𝑘 = 〈((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑛)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
→ 𝑡 = 𝑛)) |
| 467 | 400, 466 | jctird 526 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) → ((∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → (∃𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})(∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ 𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
∧ ∀𝑡 ∈
{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}∀𝑛 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ((𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
𝑘 = 〈((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑛)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
→ 𝑡 = 𝑛)))) |
| 468 | | fveq2 6905 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑛 → (1st ‘𝑡) = (1st ‘𝑛)) |
| 469 | 468 | uneq1d 4166 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑛 → ((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}) =
((1st ‘𝑛)
∪ {〈(𝑀 + 1),
0〉})) |
| 470 | | fveq2 6905 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑛 → (2nd ‘𝑡) = (2nd ‘𝑛)) |
| 471 | 470 | uneq1d 4166 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑛 → ((2nd ‘𝑡) ∪ {〈(𝑀 + 1), (𝑀 + 1)〉}) = ((2nd
‘𝑛) ∪
{〈(𝑀 + 1), (𝑀 + 1)〉})) |
| 472 | 469, 471 | opeq12d 4880 |
. . . . . . . . 9
⊢ (𝑡 = 𝑛 → 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 =
〈((1st ‘𝑛) ∪ {〈(𝑀 + 1), 0〉}), ((2nd
‘𝑛) ∪
{〈(𝑀 + 1), (𝑀 +
1)〉})〉) |
| 473 | 472 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑡 = 𝑛 → (𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
↔ 𝑘 =
〈((1st ‘𝑛) ∪ {〈(𝑀 + 1), 0〉}), ((2nd
‘𝑛) ∪
{〈(𝑀 + 1), (𝑀 +
1)〉})〉)) |
| 474 | 473 | reu4 3736 |
. . . . . . 7
⊢
(∃!𝑡 ∈
{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
↔ (∃𝑡 ∈
{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
∀𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}∀𝑛 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ((𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
𝑘 = 〈((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑛)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
→ 𝑡 = 𝑛))) |
| 475 | 58 | rexrab 3701 |
. . . . . . . 8
⊢
(∃𝑡 ∈
{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
↔ ∃𝑡 ∈
(((0..^𝐾)
↑m (1...𝑀))
× {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})(∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ 𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉)) |
| 476 | 475 | anbi1i 624 |
. . . . . . 7
⊢
((∃𝑡 ∈
{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
∀𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}∀𝑛 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ((𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
𝑘 = 〈((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑛)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
→ 𝑡 = 𝑛)) ↔ (∃𝑡 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})(∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ 𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
∧ ∀𝑡 ∈
{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}∀𝑛 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ((𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
𝑘 = 〈((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑛)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
→ 𝑡 = 𝑛))) |
| 477 | 474, 476 | bitri 275 |
. . . . . 6
⊢
(∃!𝑡 ∈
{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
↔ (∃𝑡 ∈
(((0..^𝐾)
↑m (1...𝑀))
× {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)})(∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑡)
∘f + ((((2nd ‘𝑡) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑡) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ 𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
∧ ∀𝑡 ∈
{𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}∀𝑛 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ((𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉 ∧
𝑘 = 〈((1st
‘𝑛) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑛)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉)
→ 𝑡 = 𝑛))) |
| 478 | 467, 477 | imbitrrdi 252 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})) → ((∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ∃!𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉)) |
| 479 | 478 | ralrimiva 3145 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})((∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ∃!𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉)) |
| 480 | | fveq2 6905 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑘 → (1st ‘𝑠) = (1st ‘𝑘)) |
| 481 | | fveq2 6905 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑘 → (2nd ‘𝑠) = (2nd ‘𝑘)) |
| 482 | 481 | imaeq1d 6076 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑘 → ((2nd ‘𝑠) “ (1...𝑗)) = ((2nd
‘𝑘) “
(1...𝑗))) |
| 483 | 482 | xpeq1d 5713 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑘 → (((2nd ‘𝑠) “ (1...𝑗)) × {1}) =
(((2nd ‘𝑘)
“ (1...𝑗)) ×
{1})) |
| 484 | 481 | imaeq1d 6076 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑘 → ((2nd ‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) = ((2nd ‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1)))) |
| 485 | 484 | xpeq1d 5713 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑘 → (((2nd ‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}) = (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})) |
| 486 | 483, 485 | uneq12d 4168 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑘 → ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪
(((2nd ‘𝑠)
“ ((𝑗 + 1)...(𝑀 + 1))) × {0})) =
((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) |
| 487 | 480, 486 | oveq12d 7450 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑘 → ((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) = ((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0})))) |
| 488 | 487 | uneq1d 4166 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑘 → (((1st ‘𝑠) ∘f +
((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) = (((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0}))) |
| 489 | 488 | csbeq1d 3902 |
. . . . . . . . 9
⊢ (𝑠 = 𝑘 → ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵) |
| 490 | 489 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑠 = 𝑘 → (𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ 𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 491 | 490 | rexbidv 3178 |
. . . . . . 7
⊢ (𝑠 = 𝑘 → (∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 492 | 491 | ralbidv 3177 |
. . . . . 6
⊢ (𝑠 = 𝑘 → (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ↔ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵)) |
| 493 | 480 | fveq1d 6907 |
. . . . . . 7
⊢ (𝑠 = 𝑘 → ((1st ‘𝑠)‘(𝑀 + 1)) = ((1st ‘𝑘)‘(𝑀 + 1))) |
| 494 | 493 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑠 = 𝑘 → (((1st ‘𝑠)‘(𝑀 + 1)) = 0 ↔ ((1st
‘𝑘)‘(𝑀 + 1)) = 0)) |
| 495 | 481 | fveq1d 6907 |
. . . . . . 7
⊢ (𝑠 = 𝑘 → ((2nd ‘𝑠)‘(𝑀 + 1)) = ((2nd ‘𝑘)‘(𝑀 + 1))) |
| 496 | 495 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑠 = 𝑘 → (((2nd ‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1) ↔ ((2nd ‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1))) |
| 497 | 492, 494,
496 | 3anbi123d 1437 |
. . . . 5
⊢ (𝑠 = 𝑘 → ((∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)))) |
| 498 | 497 | ralrab 3698 |
. . . 4
⊢
(∀𝑘 ∈
{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))}∃!𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
↔ ∀𝑘 ∈
(((0..^𝐾)
↑m (1...(𝑀
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))})((∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑘)
∘f + ((((2nd ‘𝑘) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑘) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑘)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑘)‘(𝑀 + 1)) = (𝑀 + 1)) → ∃!𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉)) |
| 499 | 479, 498 | sylibr 234 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))}∃!𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉) |
| 500 | | eqid 2736 |
. . . 4
⊢ (𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ↦ 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉) =
(𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ↦ 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉) |
| 501 | 500 | f1ompt 7130 |
. . 3
⊢ ((𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ↦ 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉):{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑀))
× {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}–1-1-onto→{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))} ↔ (∀𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 + 1)〉})〉
∈ {𝑠 ∈
(((0..^𝐾)
↑m (1...(𝑀
+ 1))) × {𝑓 ∣
𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))} ∧ ∀𝑘 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))}∃!𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}𝑘 = 〈((1st ‘𝑡) ∪ {〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉)) |
| 502 | 60, 499, 501 | sylanbrc 583 |
. 2
⊢ (𝜑 → (𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ↦ 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉):{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑀))
× {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}–1-1-onto→{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))}) |
| 503 | | ovex 7465 |
. . . . 5
⊢
((0..^𝐾)
↑m (1...𝑀))
∈ V |
| 504 | | ovex 7465 |
. . . . . 6
⊢
((1...𝑀)
↑m (1...𝑀))
∈ V |
| 505 | | f1of 6847 |
. . . . . . . 8
⊢ (𝑓:(1...𝑀)–1-1-onto→(1...𝑀) → 𝑓:(1...𝑀)⟶(1...𝑀)) |
| 506 | 505 | ss2abi 4066 |
. . . . . . 7
⊢ {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)} ⊆ {𝑓 ∣ 𝑓:(1...𝑀)⟶(1...𝑀)} |
| 507 | 68, 68 | mapval 8879 |
. . . . . . 7
⊢
((1...𝑀)
↑m (1...𝑀))
= {𝑓 ∣ 𝑓:(1...𝑀)⟶(1...𝑀)} |
| 508 | 506, 507 | sseqtrri 4032 |
. . . . . 6
⊢ {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)} ⊆ ((1...𝑀) ↑m (1...𝑀)) |
| 509 | 504, 508 | ssexi 5321 |
. . . . 5
⊢ {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)} ∈ V |
| 510 | 503, 509 | xpex 7774 |
. . . 4
⊢
(((0..^𝐾)
↑m (1...𝑀))
× {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∈ V |
| 511 | 510 | rabex 5338 |
. . 3
⊢ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ∈ V |
| 512 | 511 | f1oen 9014 |
. 2
⊢ ((𝑡 ∈ {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ↦ 〈((1st
‘𝑡) ∪
{〈(𝑀 + 1), 0〉}),
((2nd ‘𝑡)
∪ {〈(𝑀 + 1),
(𝑀 +
1)〉})〉):{𝑠 ∈
(((0..^𝐾)
↑m (1...𝑀))
× {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵}–1-1-onto→{𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))} → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))}) |
| 513 | 502, 512 | syl 17 |
1
⊢ (𝜑 → {𝑠 ∈ (((0..^𝐾) ↑m (1...𝑀)) × {𝑓 ∣ 𝑓:(1...𝑀)–1-1-onto→(1...𝑀)}) ∣ ∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...𝑀)) × {0}))) ∪ (((𝑀 + 1)...𝑁) × {0})) / 𝑝⦌𝐵} ≈ {𝑠 ∈ (((0..^𝐾) ↑m (1...(𝑀 + 1))) × {𝑓 ∣ 𝑓:(1...(𝑀 + 1))–1-1-onto→(1...(𝑀 + 1))}) ∣ (∀𝑖 ∈ (0...𝑀)∃𝑗 ∈ (0...𝑀)𝑖 = ⦋(((1st
‘𝑠)
∘f + ((((2nd ‘𝑠) “ (1...𝑗)) × {1}) ∪ (((2nd
‘𝑠) “ ((𝑗 + 1)...(𝑀 + 1))) × {0}))) ∪ ((((𝑀 + 1) + 1)...𝑁) × {0})) / 𝑝⦌𝐵 ∧ ((1st ‘𝑠)‘(𝑀 + 1)) = 0 ∧ ((2nd
‘𝑠)‘(𝑀 + 1)) = (𝑀 + 1))}) |